科目: 來源: 題型:
【題目】如圖,在△ABC中,AM是中線,AD是高線.
(1)若AB比AC長4 cm,則△ABM的周長比△ACM的周長多__________ cm.
(2)若△AMC的面積為12 cm2,則△ABC的面積為__________cm 2.
(3)若AD又是△AMC的角平分線,∠AMB=130°,求∠ACB的度數(shù).(寫過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】在太空種子種植體驗實踐活動中,為了解“宇番2號”番茄,某?萍夹〗M隨機調查60株番茄的掛果數(shù)量x(單位:個),并繪制如下不完整的統(tǒng)計圖表:
“宇番2號”番茄掛果數(shù)量統(tǒng)計表
掛果數(shù)量x(個) | 頻數(shù)(株) | 頻率 |
25≤x<35 | 6 | 0.1 |
35≤x<45 | 12 | 0.2 |
45≤x<55 | a | 0.25 |
55≤x<65 | 18 | b |
65≤x<75 | 9 | 0.15 |
請結合圖表中的信息解答下列問題:
(1)統(tǒng)計表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補充完整;
(3)若繪制“番茄掛果數(shù)量扇形統(tǒng)計圖”,則掛果數(shù)量在“35≤x<45”所對應扇形的圓心角度數(shù)為 °;
(4)若所種植的“宇番2號”番茄有1000株,則可以估計掛果數(shù)量在“55≤x<65”范圍的番茄有 株.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 在四邊形ABCD中,AD∥BC, E為CD的中點,連接 AE 、BE ,BE⊥AE, 延長AE交BC的延長線于 F,求證:(1) BE平分∠ABC (2)AB=BC+AD
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)過點A(3,4),直線AC與x軸交于點C(6,0),過點C作x軸的垂線BC交反比例函數(shù)圖象于點B.
(1)求k的值與B點的坐標;
(2)在平面內有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有D點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方形ABCD,點P是對角線AC所在直線上的動點,點E在DC邊所在直線上,且隨著點P的運動而運動,PE=PD總成立。
(1)如圖(1),當點P在對角線AC上時,請你通過測量、觀察,猜想PE與PB有怎樣的關系?(直接寫出結論不必證明);
(2)如圖(2),當點P運動到CA的延長線上時,(1)中猜想的結論是否成立?如果成立,請給出證明;如果不成立,請說明理由;
(3)如圖(3),當點P運動到CA的反向延長線上時,請你利用圖(3)畫出滿足條件的圖形,并判斷此時PE與PB有怎樣的關系?(直接寫出結論不必證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學圖書室計劃購買了甲、乙兩種故事書.若購買7本甲種故事書和4本乙種故事書需510元;購買3本甲種故事書和5本乙種故事書需350元.
(1)求甲種故事書和乙種故事書的單價;
(2)學校準備購買甲、乙兩種故事書共200本,且甲種故事書的數(shù)量不少于乙種故事書的數(shù)量的,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形BEDF是平行四邊形;(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學開展“我的中國夢”演講比賽活動,九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如下圖所示.
(1)根據(jù)如圖,分別求出兩班復賽的平均成績和方差;
(2)根據(jù)(1)的計算結果,分析哪個班級5名選手的復賽成績波動?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com