科目: 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°.
(1)求作:△ABC的內切圓⊙O;(尺規(guī)作圖,不寫作法,保留痕跡)
(2)在(1)中,∠AOB的度數(shù)為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】某校學生會調查了八年級部分學生對“垃圾分類”的了解程度(1)在確定調查方式時,學生會設計了以下三種方案,其中最具有代表性
的方案是________;
方案一:調查八年級部分男生;
方案二:調查八年級部分女生;
方案三:到八年級每個班去隨機調查一定數(shù)量的學生.
(2)學生會采用最具有代表性的方案進行調查后,將收集到的數(shù)據繪制成如下兩幅不完整的統(tǒng)計圖,如圖①、圖②.請你根據圖中信息,回答下列問題:
①本次調查學生人數(shù)共有_______名;
②補全圖①中的條形統(tǒng)計圖,圖②中了解一點的圓心角度數(shù)為_______;
③根據本次調查,估計該校八年級500名學生中,比較了解“垃圾分類”的學生大約有_______名.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是明明設計的智力拼圖玩具的一部分,現(xiàn)在明明遇到了兩個問題,請你幫助解決:
問題1:∠D=32°,∠ACD=60°,為保證AB∥DE,則∠A等于多少度?
問題2:∠G,∠GFH,∠H之間有什么樣的關系時,GP∥HQ?
查看答案和解析>>
科目: 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據成績繪制成如下兩幅不完整的統(tǒng)計圖,請結合統(tǒng)計圖中的信息,回答下列問題:
(1)扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角為 度,并將條形統(tǒng)計圖補充完整.
(2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丁的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),與x軸的另一個交點在點(1,0)和(2,0)之間,對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③a+c>0;④2a+c<0,其中正確的結論個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,給出如下定義:已知點A(2,3),點B(6,3),連接AB.如果線段AB上有一個點與點P的距離不大于1,那么稱點P是線段AB的“環(huán)繞點”.
(1)已知點C(3,1.5),D(4,3.5),E(1,3),則是線段AB的“環(huán)繞點”的點是 ;
(2)已知點P(m,n)在反比例函數(shù)y=的圖象上,且點P是線段AB的“環(huán)繞點”,求出點P的橫坐標m的取值范圍;
(3)已知⊙M上有一點P是線段AB的“環(huán)繞點”,且點M(4,1),求⊙M的半徑r的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com