科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D為CB上一點,過點D作DE⊥AB于點E.
(1)若CD=DE,判斷∠CAD與∠BAD的數(shù)量關系;
(2)若AE=EB,CB=10,AC=5,求△ACD的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點B,F,C,E在同一直線上,AC,DF相交于點G,且△ABC≌△DEF
(1)若△ABC的周長為12cm,AB=3cm,BC=4cm,求DF的長.
(2)若DE⊥BC與點E,∠A=65°,求∠AGF的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為_____厘米/秒,△BPD與△CQP全等.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題:①因為,所以是;②平行于同一條直線的兩條直線平行;③相等的角是對頂角;④三角形三條中線的交點是三角形的重心;⑤同位角相等.其中真命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:是最小的正整數(shù),且、滿足,請回答問題:
(1)請直接寫出、、的值. , , .
(2)、、所對應的點分別為、、,點為一動點,其對應的數(shù)為,點在、之間運動時,請化簡式子:(請寫出化簡過程)
(3)在(1)(2)的條件下,點、、開始在數(shù)軸上運動,若點以每秒個單位長度的速度向左運動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右運動,假設經(jīng)過秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為.請問:的值是否隨著時間的變化而改變?若變化,請說明理由:若不變,請求其值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長度),線段CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是-10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個單位長度的速度向右勻速運動,同時線段CD以每秒2個單位長度的速度向左勻速運動.設運動時間為t s.
(1)當點B與點C相遇時,點A、點D在數(shù)軸上表示的數(shù)分別為________;
(2)當t為何值時,點B剛好與線段CD的中點重合;
(3)當運動到BC=8(單位長度)時,求出此時點B在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】再讀教材:
寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.
第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點D折出 DE,使 DE⊥ND,則圖④中就會出現(xiàn)黃金矩形,
問題解決:
(1)圖③中AB=________(保留根號);
(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;
(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.
(4)結(jié)合圖④.請在矩形 BCDE中添加一條線段,設計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校七年級共有800名學生,準備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團委設計了以下三種方案:
方案一:調(diào)查七年級部分女生;
方案二:調(diào)查七年級部分男生;
方案三:到七年級每個班去隨機調(diào)查一定數(shù)量的學生.
請問其中最具有代表性的一個方案是 ;
(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請你估計該校七年級約有 名學生比較了解“低碳”知識.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.
(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?
(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分別為A,B.下列結(jié)論中:①PA=PB;②PO平分∠APB;③OA=OB④AB垂直平分OP,一定成立的是_________(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com