科目: 來源: 題型:
【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點E為AD的中點.若點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BC上由點B向點C運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請說明理由,并直接寫出此時線段PE和線段PQ的位置關(guān)系;
(2)若點Q的運動速度與點P的運動速度相等,運動時間為t秒,設(shè)△PEQ的面積為Scm2,請用t的代數(shù)式表示S;
(3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△AEP與△BPQ全等?
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示
(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標(biāo)為 ;
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為 ;
(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標(biāo)為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)△ABC中,H是高AD和BE的交點,且AD=BD.
(1)請你猜想BH和AC的關(guān)系,并說明理由;
(2)若將圖(1)中的∠A改成鈍角,請你在圖(2)中畫出該題的圖形,此時(1)中的結(jié)論還成立嗎?(不必證明).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形.則下列結(jié)論:
①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等邊三角形;⑤FG∥AD.其中正確的有( 。
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目: 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】書是人類進步的階梯!為愛護書一般都將書本用封皮包好,現(xiàn)有一本如圖1的數(shù)學(xué)課本,其長為26cm、寬為18.5cm、厚為1cm,小海寶用一張長方形紙包好了這本數(shù)學(xué)書,他將封面和封底各折進去xcm封皮展開后如圖(2)所示,求:
(1)則小海寶所用包書紙的面積是多少?(用含x的代數(shù)式表示)
(2)當(dāng)封面和封底各折進去2cm時,請幫小海寶計算一下他需要的包裝紙至少需要多少平方厘米?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與理解:
如圖1,直線,點P在a,b之間,M,N分別為a,b上的點,P,M,N三點不在同一直線上,PM與a的央角為,PN與b的夾角為,則.
理由如下:
過P點作直線,因為,所以(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).所以,.(兩直線平行,內(nèi)錯角相等),所以,即.
計算與說明:
已知:如圖2,AB與CD交于點O.
(1).若,求證:;
(2)2.如圖3,已知,AE平分,DE平分.
①若,,請你求出的度數(shù);
②請問:圖3中,與有怎樣的數(shù)量關(guān)系?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】完成下面的證明過程:
如圖,AB∥CD,AD∥BC,BE平分∠ABC,DF平分∠ADC.
求證:BE∥DF.
證明:∵AB∥CD,(已知)
∴∠ABC+∠C=180°.( )
又∵AD∥BC,(已知)
∴ +∠C=180°.( )
∴∠ABC=∠ADC.( )
∵BE平分∠ABC,(已知)
∴∠1=∠ABC.( )
同理,∠2=∠ADC.
∴ =∠2.
∵AD∥BC,(已知)
∴∠2=∠3.( )
∴∠1=∠3,
∴BE∥DF.( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限內(nèi)作正方形ABCD,頂點D在雙曲線上,將該正方形沿x軸負(fù)方向平移個單位長度后,頂點C恰好落在雙曲線上,則的值是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com