科目: 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)活動課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過程中均有個別錯誤.
(1)寫出乙同學(xué)在數(shù)據(jù)整理或繪圖過程中的錯誤(寫出一個即可);
(2)甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計圖表示,則159.5﹣164.5這一部分所對應(yīng)的扇形圓心角的度數(shù)為 ;
(3)該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是 ;
(4)假設(shè)身高在169.5﹣174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價10%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請用簡潔的語言表達(dá)BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
科目: 來源: 題型:
【題目】節(jié)約用水和合理開發(fā)利用水資源是每個公民應(yīng)盡的責(zé)任和義務(wù),為了加強公民的節(jié)水意識,合理利用水資源,各地采用價格調(diào)控等手段引導(dǎo)市民節(jié)約用水.某市規(guī)定如下用水收費標(biāo)準(zhǔn):每戶每月的用水量不超過6m3時,按a元/ m3收費;超過6m3時,超過的部分按b元/ m3收費.該市某戶居民今年2月份的用水量為9m3,繳納水費27元;3月份的用水量為11m3,繳納水費37元.
(1)求a、b的值.
(2)若該市某戶居民今年4月份的用水量為13.5 m3,則應(yīng)繳納水費多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點C在直線l上.
操作:
過點A作AD⊥l于點D,過點B作BE⊥l于點E.求證:△CAD≌△BCE.
模型應(yīng)用:
(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.
(2)如圖3,在直角坐標(biāo)系中,點B(8,6),作BA⊥y軸于點A,作BC⊥x軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A在x軸上,坐標(biāo)為(0,3),點B在x軸上.
(1)在坐標(biāo)系中求作一點M,使得點M到點A,點B和原點O這三點的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若sin∠OAB=,求點M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABC中,∠C=90,BD是ABC的一條角一平分線,點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形,
(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長
查看答案和解析>>
科目: 來源: 題型:
【題目】直線y=1與雙曲線y=相交于點A1,與雙曲線y=相交于點B1,直線y=2與雙曲線y=相交于點A2,與雙曲線y=相交于點B2,則四邊形A1B1B2A2的面積為_____;直線y=n與雙曲線y=相交于點An,與雙曲線y=相交于點Bn,直線y=n+1與雙曲線y=相交于點An+1,與雙曲線y=相交于點Bn+1,則四邊形AnBnBn+1An+1的面積為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次晚會上,大家做投飛鏢的游戲.只見靶子設(shè)計成如圖的形式.已知從里到外的三個圓的半徑分別為l,2,3,并且形成A,B,C三個區(qū)域.如果飛鏢沒有停落在最大圓內(nèi)或只停落在圓周上,那么可以重新投鏢.
(1)分別求出三個區(qū)域的面積;
(2)雨薇與方冉約定:飛鏢停落在A、B區(qū)域雨薇得1分,飛鏢落在C區(qū)域方冉得1分.你認(rèn)為這個游戲公平嗎? 為什么? 如果不公平,請你修改得分規(guī)則,使這個游戲公平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com