科目: 來源: 題型:
【題目】如圖,A、B是雙曲線y=(k>0)上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、3a,線段AB的延長(zhǎng)線交x軸于點(diǎn)C,若S△AOC=3.則k的值為( 。
A. 2 B. 1.5 C. 4 D. 6
查看答案和解析>>
科目: 來源: 題型:
【題目】選擇適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>:
(1)7x(3x-4)=9(3x-4);
(2)x2-6x+9=(5-2x)2;
(3)2x2-5x-7=0;
(4)x2-2x-1=0.
查看答案和解析>>
科目: 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)y=(k>0,x>0)的圖象上時(shí),求菱形ABCD沿x軸正方向平移的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】矩形ABCD的對(duì)角線相交于點(diǎn)O,∠COE=45°,過點(diǎn)C作CE⊥BD于點(diǎn)E,
(1)如圖1,若CB=1,求△CED的面積;
(2)如圖2,過點(diǎn)O作OF⊥DB于點(diǎn)O,OF=OD,連接FC,點(diǎn)G是FC中點(diǎn),連接GE,求證:DC=2GE.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀材料:一般情形下等式=1不成立,但有些特殊實(shí)數(shù)可以使它成立,例如:x=2,y=2時(shí),=1成立,我們稱(2,2)是使=1成立的“神奇數(shù)對(duì)”.請(qǐng)完成下列問題:
(1)數(shù)對(duì)(,4),(1,1)中,使=1成立的“神奇數(shù)對(duì)”是 ;
(2)若(5﹣t,5+t)是使=1成立的“神奇數(shù)對(duì)”,求t的值;
(3)若(m,n)是使=1成立的“神奇數(shù)對(duì)”,且a=b+m,b=c+n,求代數(shù)式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市進(jìn)貨員預(yù)測(cè)一種應(yīng)季水果能暢銷市場(chǎng),用3000元購進(jìn)第一批這種水果,面市后果然供不應(yīng)求,全部賣完,超市進(jìn)貨員又用1500元購進(jìn)了第二批這種水果,但進(jìn)價(jià)比第一批上漲了50%,若兩批水果的平均價(jià)格為9元/kg
(1)求購進(jìn)第一批該種水果的單價(jià);
(2)第一批水果的銷售單價(jià)為10元/kg,第二批水果的銷售單價(jià)為15元/kg,但在第二批水果的銷售過程中發(fā)現(xiàn)銷量不好,超市決定第二批水果銷售一定數(shù)量后將剩余水果按原售價(jià)的7折銷售.要使兩批水果全部銷售后共獲利不少于900元,問第二批水果按原銷售單價(jià)至少銷售多少千克?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場(chǎng)出售一批進(jìn)價(jià)為2元的賀卡,在營運(yùn)中發(fā)現(xiàn)此商品的日銷價(jià)x(單位:元)與銷售量y(單位:張)之間有如下關(guān)系:
x/元 | 3 | 4 | 5 | 6 |
y/張 | 20 | 15 | 12 | 10 |
(1)猜測(cè)并確定y與x的函數(shù)關(guān)系式.
(2)當(dāng)日銷售單價(jià)為10元時(shí),賀卡的日銷售量是多少張?
(3)設(shè)此卡的利潤為W元,試求出W與x之間的函數(shù)關(guān)系式,若物價(jià)部門規(guī)定此卡的銷售單價(jià)不能超過10元,試求出當(dāng)日銷售單價(jià)為多少元時(shí),每天獲得的利潤最大并求出最大的利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB∥CD,點(diǎn)E,F分別在AB,CD上,連接EF,∠AEF,∠CFE的平分線交于點(diǎn)G,∠BEF,∠DFE的平分線交于點(diǎn)H.易證∠EHF=∠EGF=∠GEH=90°,從而可知四邊形EGFH是矩形.
小明繼續(xù)進(jìn)行了探索,過G作MN∥EF,分別交AB,CD于點(diǎn)M,N,過H作PQ∥EF,分別交AB,CD于點(diǎn)P,Q,得到四邊形MNQP,此時(shí),他猜想四邊形MNQP是菱形,請(qǐng)?jiān)谙铝锌蛑醒a(bǔ)全他的證明思路.
由AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形.要證平行四邊形MNQP是菱形,只要證MN=NQ.由已知條件_____,MN∥EF,可得NG=NF,故只要證GM=FQ,即證△MGE≌△QFH.易證_____,_____,故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得證.
查看答案和解析>>
科目: 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小紅和小明都沒有抽到“論語”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com