科目: 來源: 題型:
【題目】已知:AC是菱形ABCD的對角線,且AC=BC.
(1)如圖①,點(diǎn)P是△ABC的一個動點(diǎn),將△ABP繞著點(diǎn)B旋轉(zhuǎn)得到△CBE.
①求證:△PBE是等邊三角形;
②若BC=5,CE=4,PC=3,求∠PCE的度數(shù);
(2)連結(jié)BD交AC于點(diǎn)O,點(diǎn)E在OD上且DE=3,AD=4,點(diǎn)G是△ADE內(nèi)的一個動點(diǎn)如圖②,連結(jié)AG,EG,DG,求AG+EG+DG的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△AOB中,∠OAB=90°,OA=AB,將Rt△AOB放置于直角坐標(biāo)系中,OB在x軸上,點(diǎn)O是原點(diǎn),點(diǎn)A在第一象限.點(diǎn)A與點(diǎn)C關(guān)于x軸對稱,連結(jié)BC,OC.雙曲線 (x>0)與OA邊交于點(diǎn)D、與AB邊交于點(diǎn)E.
(1)求點(diǎn)D的坐標(biāo);
(2)求證:四邊形ABCD是正方形;
(3)連結(jié)AC交OB于點(diǎn)H,過點(diǎn)E作EG⊥AC于點(diǎn)G,交OA邊于點(diǎn)F,求四邊形OHGF的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=10,BC=8,AC=6.點(diǎn)D在AB邊上(不包括端點(diǎn)),DE⊥AC,DF⊥BC,垂足分別為點(diǎn)E和點(diǎn)F,連結(jié)EF.
(1)判斷四邊形DECF的形狀,并證明;
(2)線段EF是否存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(知識鏈接)連結(jié)三角形兩邊中點(diǎn)的線段,叫做三角形的中位線.
(動手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時(shí),是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.
(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長BC至點(diǎn)D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:作已知角的角平分線.已知:如圖,∠BAC.求作:∠BAC的角平分線AP.
小欣的作法如下:
(1)如圖,在平面內(nèi)任取一點(diǎn)O;
(2)以點(diǎn)O為圓心,AO為半徑作圓,交射線AB于點(diǎn)D,交射線AC于點(diǎn)E;
(3)連接DE,過點(diǎn)O作射線OP垂直于線段DE,交⊙O于點(diǎn)P;
(4)過點(diǎn)P作射線AP.
所以射線AP為所求
根據(jù)小欣設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OPDE
∴ =______(________________________)(填推理的依據(jù)),
∴∠BAP=______ (________________________)(填推理的依據(jù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知反比例函數(shù)與一次函數(shù)y=kx+b的圖象都經(jīng)過點(diǎn)(-2,-1),且當(dāng)x=3時(shí)這兩個函數(shù)值相等.
(1)求這兩個函數(shù)的解析式;
(2)直接寫出當(dāng)x取何值時(shí),成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁薄型紙比厚型紙輕0.8克,求A4薄型紙每頁的質(zhì)量.(墨的質(zhì)量忽略不計(jì))
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在線段AB上找一點(diǎn)C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2,那么稱線段AB被點(diǎn)C黃金分割.為了增加美感,黃金分割經(jīng)常被應(yīng)用在繪畫、雕塑、音樂、建筑等藝術(shù)領(lǐng)域.如圖2,在“附中博識課程中”,小白菜們沿著紫禁城的中軸線,從內(nèi)金水橋走到了太和殿,領(lǐng)略了古代建筑的宏偉.太和門位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側(cè),三個建筑的位置關(guān)系滿足黃金分割.已知太和殿到內(nèi)金水橋的距離約為100丈,設(shè)太和門到太和殿之間的距離為x丈,要求x,則可列方程為________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF,CF,則下列結(jié)論中一定成立的是______.(把所有正確結(jié)論的序號都填在橫線上)
(1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com