科目: 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為AB延長線上一點(diǎn),連接CD,∠AMC=90°,AM交BC于點(diǎn)N,∠APB=90°,AP交CD于點(diǎn)Q.
(1)求證:AN=CQ;
(2)如圖,點(diǎn)E在BA的延長線上,且AD=BE,連接EN并延長交CD于點(diǎn)F,求證:DQ=EN;
(3)在(2)的條件下,當(dāng)3AE=2AB時,請直接寫出EN:FN的值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△BAC為圓O內(nèi)接三角形,AB=AC,D為⊙O上一點(diǎn),連接CD、BD,BD與AC交于點(diǎn)E,且BC2=ACCE
①求證:∠CDB=∠CBD;
②若∠D=30°,且⊙O的半徑為3+,I為△BCD內(nèi)心,求OI的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校兩次購買足球和籃球的支出情況如表:
足球(個) | 籃球(個) | 總支出(元) | |
第一次 | 2 | 3 | 310 |
第二次 | 5 | 2 | 500 |
(1)求購買一個足球、一個籃球的花費(fèi)各需多少元?(請列方程組求解)
(2)學(xué)校準(zhǔn)備給幫扶的貧困學(xué)校送足球、籃球共計60個,恰逢市場對兩種球的價格進(jìn)行了調(diào)整,足球售價提高了10%,籃球售價降低了10%,如果要求一次性購得這批球的總費(fèi)用不超過4000元,那么最多可以購買多少個足球?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)都在反比例函數(shù)的圖象上.
(1)求的值;
(2)如果為軸上一點(diǎn),為軸上一點(diǎn),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試求直線的函數(shù)表達(dá)式;
(3)將線段沿直線進(jìn)行對折得到線段,且點(diǎn)始終在直線上,當(dāng)線段與軸有交點(diǎn)時,則的取值范圍為_______(直接寫出答案)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,AD=CD,點(diǎn)E在AD上,DE=BD,M、N分別是AB、CE的中點(diǎn).
(1)求證:△ADB≌△CDE;
(2)求∠MDN的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)D在半圓O上,半徑OB=2,AD=10,點(diǎn)C在弧BD上移動,連接AC,H是AC上一點(diǎn),∠DHC=90°,連接BH,點(diǎn)C在移動的過程中,BH的最小值是( 。
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com