科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線BC:y=交x軸于點B,點A在x軸正半軸上,OC為△ABC的中線,C的坐標為(m,)
(1)求線段CO的長;
(2)點D在OC的延長線上,連接AD,點E為AD的中點,連接CE,設點D的橫坐標為t,△CDE的面積為S,求S與t的函數(shù)解析式;
(3)在(2)的條件下,點F為射線BC上一點,連接DB、DF,且∠FDB=∠OBD,CE=,求此時S值及點F坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC內接于⊙O,AD平分∠BAC交⊙O于點D,交BC于點K,連接DB、DC.
(1)如圖1,求證:DB=DC;
(2)如圖2,點E、F在⊙O上,連接EF交DB、DC于點G、H,若DG=CH,求證:EG=FH;
(3)如圖3,在(2)的條件下,BC經過圓心O,且AD⊥EF,BM平分∠ABC交AD于點M,DK=BM,連接GK、HK、CM,若△BDK與△CKM的面積差為1,求四邊形DGKH的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC于G,GF⊥BC于F,連接EF.
(1)如圖1,求證:四邊形AEFG是菱形;
(2)如圖2,若E為BG的中點,過點E作EM∥BC交AC于M,在不添加任何輔助線的情況下,請直接寫出圖2中是CM長倍的所有線段.
查看答案和解析>>
科目: 來源: 題型:
【題目】時下娛樂綜藝節(jié)目風靡全國,隨機對九年級部分學生進行了一次調查,對最喜歡《我是喜劇王》(記為A)、《王牌對王牌》(記為B)、《奔跑吧,兄弟》(記為C)、《歡樂喜劇人》(記為D)的同學進行了統(tǒng)計(每位同學只選擇一個最喜歡的節(jié)目),繪制了以下不完整的統(tǒng)計圖,請根據圖中信息解答問題:
(1)求本次調查一共選取了多少名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)若九年級共有1900名學生,估計其中最喜歡《奔跑吧,兄弟》的學生大約是多少名.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+6與x軸交于點A,與y軸交于點B,在x軸上有一點E,在y軸上有一點F,滿足OB=3BF=3AE,連接EF,交AB于點M,則M的坐標為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔一項筑路任務,甲隊單獨施工完成此項任務比乙隊單獨施工完成此項任務多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為(,1),下列結論:其中正確的個數(shù)是( 。
①a<0;
②b<0;
③c<0;
④;
⑤a+b+c<0.
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目: 來源: 題型:
【題目】“構造圖形解題”,它的應用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經常讓我們手足無措,難以下手,這時,如果能轉換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:
實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由四邊形得,化簡得:.
實例二:歐幾里得的《幾何原本》記載,關于的方程的圖解法是:畫,使,,,再在斜邊上截取,則的長就是該方程的一個正根(如實例二圖).
根據以上閱讀材料回答下面的問題:
(1)如圖1,請利用圖形中面積的等量關系,寫出甲圖要證明的數(shù)學公式是 ,乙圖要證明的數(shù)學公式是 ,體現(xiàn)的數(shù)學思想是 ;
(2)如圖2,按照實例二的方式構造,連接,請用含字母、的代數(shù)式表示的長,的表達式能和已學的什么知識相聯(lián)系;
(3)如圖3,已知,為直徑,點為圓上一點,過點作于點,連接,設,,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com