科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點B的坐標(biāo)為(2,0),點A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時點A′的橫坐標(biāo)為3,則點B′的坐標(biāo)為( )
A. (4,2) B. (3,3) C. (4,3) D. (3,2)
查看答案和解析>>
科目: 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.
(1)求拋物線的表達式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,BC=3cm,點P從點A出發(fā),沿A→B→C向終點C勻速運動,在邊AB,BC上分別以4cm/s,3cm/s的速度運動,同時點Q從點A出發(fā),沿A→D→C向終點C勻速運動,在邊AD,DC上分別以3cm/s,4cm/s的速度運動,連接PQ,設(shè)點P的運動時間為t(s),四邊形PBDQ的面積為S(cm2).
(1)當(dāng)點P到達邊AB的中點時,求PQ的長;
(2)求S與t之間的函數(shù)解析式,并寫出自變量t的取值范圍;
(3)連接DP,當(dāng)直線DP將矩形ABCD分成面積比為1:5兩部分時,直接寫出t的值,并寫出此時S的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過點B(1,﹣3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點A.
(1)求拋物線的解析式,并根據(jù)圖象直接寫出當(dāng)y≤0時,自變量x的取值范圖;
(2)在第二象限內(nèi)的拋物線上有一點P,當(dāng)PA⊥BA時,求△PAB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】將兩塊大小相同的含30°角的直角三角板(=30°)按圖1的方式放置,固定三角板ABC然后將三角板ABC繞直角頂點C順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖2所示的位置,AB與AC交于點E,AC與AB交于點F,AB與AB交于點O.
(1)求證:;
(2)當(dāng)旋轉(zhuǎn)角等于30°時,AB與AB垂直嗎?請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.
(1)畫出該二次函數(shù)的圖象;
(2)連接AC、CD、BD,求ABCD的面積
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點O對稱的圖形△COD;
(2)將△AOB繞點O按逆時針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點D的坐標(biāo)是 ,點F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com