相關(guān)習題
 0  363662  363670  363676  363680  363686  363688  363692  363698  363700  363706  363712  363716  363718  363722  363728  363730  363736  363740  363742  363746  363748  363752  363754  363756  363757  363758  363760  363761  363762  363764  363766  363770  363772  363776  363778  363782  363788  363790  363796  363800  363802  363806  363812  363818  363820  363826  363830  363832  363838  363842  363848  363856  366461 

科目: 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.

(1)若∠A=60°,求BC的長;

(2)若sinA=,求AD的長.

(注意:本題中的計算過程和結(jié)果均保留根號)

查看答案和解析>>

科目: 來源: 題型:

【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始向點B1cm/s的速度移動,點Q從點B開始沿邊BC向點C2cm/s的速度移動.如果點P,Q分別從點A,B同時出發(fā),那么(1)經(jīng)過幾秒后,△PBQ的面積為4cm2?

2)并通過計算回答△PBQ的面積能否達到8cm2?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一次函數(shù)軸交點恰好是二次函數(shù)與的其中一個交點,已知二次函數(shù)圖象的對稱軸為,并與軸的交點為.

(1)求二次函數(shù)的解析式;

(2)設該二次函數(shù)與一次函數(shù)的另一個交點為點,連接,求三角形的面積。

查看答案和解析>>

科目: 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠?

1)(2x+3)2 -16=0

23x2+x-1=0

33x(x-1)=2-2x

49(3x-1)2 =(2-x)2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列4個結(jié)論:①;②a-b+c>0;③;④,⑤a+bam2+bm其中正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC,AB=AC=5,BC=6,D,E分別是邊AB,AC上的兩個動點(D不與A,B重合),且保持DEBC,以DE為邊,在點A的異側(cè)作正方形DEFG.

(1)FGBC重合時,求正方形DEFG的邊長;

(2)AD=x,△ABC與正方形DEFG重疊部分的面積為y,試求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)當△BDG是等腰三角形時,請直接寫出AD的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk≠0)的圖象與x軸,y軸分別交于A(﹣9,0)、B0,6),過點C2,0)作直線lBC垂直,點E在直線l位于x軸上方的部分.

1)求一次函數(shù)y=kx+bk≠0)的解析式;

2)求直線l的解析式;

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰RtABC和等腰RtADE,∠ABC=ADE=90° ,CDBEAE分別交于點P、M

求證:(1BAE∽△CAD;

22CB2=CPCM

查看答案和解析>>

同步練習冊答案