相關習題
 0  364131  364139  364145  364149  364155  364157  364161  364167  364169  364175  364181  364185  364187  364191  364197  364199  364205  364209  364211  364215  364217  364221  364223  364225  364226  364227  364229  364230  364231  364233  364235  364239  364241  364245  364247  364251  364257  364259  364265  364269  364271  364275  364281  364287  364289  364295  364299  364301  364307  364311  364317  364325  366461 

科目: 來源: 題型:

【題目】如圖,ABO的直徑,弦EFAB于點C,過點FO的切線交AB的延長線于點D

1)已知∠Aα,求∠D的大。ㄓ煤α的式子表示);

2)取BE的中點M,連接MF,請補全圖形;若∠A30°,MF,求O的半徑.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四邊形ABCD為菱形,點EF、G、H分別為各邊中點,判斷E、F、G、H四點是否在同一個圓上,如果在同一圓上,找到圓心,并證明四點共圓;如果不在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴頭,使噴出的拋物線形水柱在與水池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離中心3m

1)在給定的坐標系中畫出示意圖;

2)求出水管的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數學重要的著作,奠定了中國傳統(tǒng)數學的基本框架《九章算術》中記

載:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?如圖

閱讀完這段文字后,小智畫出了一個圓柱截面示意圖如圖,其中BOCD于點A,求間徑就是要求O的直徑再次閱讀后,發(fā)現AB=______寸,CD=____一尺等于十寸,通過運用有關知識即可解決這個問題請你補全題目條件,并幫助小求出O的直徑

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線y=x22x8

1)用配方法把y=x22x8化為y=xh2+k形式;

2)并指出:拋物線的頂點坐標是 ,拋物線的對稱軸方程是 ,拋物線與x軸交點坐標是 ,當x 時,yx的增大而增大.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下面材料:

在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:過圓外一點作圓的切線.

已知:PO外一點.

求作:經過點PO的切線.

小敏的作法如下:

如圖,

1)連接OP,作線段OP的垂直平分線MNOP于點C;

2)以點C為圓心,CO的長為半徑作圓,交OAB兩點;

3)作直線PA,PB.所以直線PA,PB就是所求作的切線.

老師認為小敏的作法正確.

請回答:連接OA,OB后,可證∠OAP=∠OBP90°,其依據是_____;由此可證明直線PA,PB都是O的切線,其依據是_____

查看答案和解析>>

科目: 來源: 題型:

【題目】二次函數y2x28x+m滿足以下條件:當﹣2x<﹣1時,它的圖象位于x軸的下方;當6x7時,它的圖象位于x軸的上方,則m的值為( 。

A. 8 B. 10 C. 42 D. 24

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線軸交于點C(O,4),與軸交于點A和點B,其中點A的坐標為(-2,0),拋物線的對稱軸與拋物線交于點D,與直線BC交于點E.

(1)求拋物線的解析式;

(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;

(3)平行于DE的一條動直線Z與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標。

查看答案和解析>>

科目: 來源: 題型:

【題目】1)如圖 1,在邊長為 1 個單位長度的小正方形組成的網格中,ABC 的三個頂點均在格點上.現將ABC 繞點 A 按順時針方向旋轉 90°,點 B 的對應點為B′,點 C 的對應點為C′, 連接 BB′,如圖所示則∠AB′B

2)如圖 2,在等邊ABC 內有一點 P,且 PA2,PB ,PC1,如果將BPC 繞點 B 逆時針旋轉 60°得出ABP′,求∠BPC 的度數和 PP′的長;

3)如圖3,在中,,,,點O內一點,連接AO,BOCO,且,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】學以致用:問題1:怎樣用長為的鐵絲圍成一個面積最大的矩形?

小學時我們就知道結論:圍成正方形時面積最大,即圍成邊長為的正方形時面積最大為.請用你所學的二次函數的知識解釋原因.

思考驗證:問題2:怎樣用鐵絲圍一個面積為且周長最小的矩形?

小明猜測:圍成正方形時周長最小.

為了說明其中的道理,小明翻閱書籍,找到下面的材料:

結論:在、均為正實數)中,若為定值,則,當且僅當時,有最小值

均為正實數)的證明過程:

對于任意正實數、,,,

,當且僅當時,等號成立。

解決問題:

1)若,則  (當且僅當  時取;

2)運用上述結論證明小明對問題2的猜測;

3)當時,求的最小值.

查看答案和解析>>

同步練習冊答案