【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點C,過點F作⊙O的切線交AB的延長線于點D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中點M,連接MF,請補全圖形;若∠A=30°,MF=,求⊙O的半徑.
【答案】(1)∠D=90°﹣2α;(2)⊙O的半徑為2.
【解析】
(1)連接OE,OF,如圖,利用等腰三角形的性質得到∠DOF=∠DOE.而∠DOE=2∠A,所以∠DOF=2α,再根據(jù)切線的性質得∠OFD=90°.從而得到∠D=90°﹣2α;
(2)連接OM,如圖,利用圓周角定理得到∠AEB=90°.再證明OM∥AE得到∠MOB=∠A=30°.而∠DOF=2∠A=60°,所以∠MOF=90°,設⊙O的半徑為r,利用含30度的直角三角形三邊的關系得OM=BM=r,然后根據(jù)勾股定理得到即(r)2+r2=()2,再解方程即可得到⊙O的半徑.
解:(1)連接OE,OF,如圖,
∵EF⊥AB,AB是⊙O的直徑,
∴∠DOF=∠DOE.
∵∠DOE=2∠A,∠A=α,
∴∠DOF=2α,
∵FD為⊙O的切線,
∴OF⊥FD.
∴∠OFD=90°.
∴∠D+∠DOF=90°,
∴∠D=90°﹣2α;
(2)連接OM,如圖,
∵AB為⊙O的直徑,
∴O為AB中點,∠AEB=90°.
∵M為BE的中點,
∴OM∥AE,
∵∠A=30°,
∴∠MOB=∠A=30°.
∵∠DOF=2∠A=60°,
∴∠MOF=90°,
設⊙O的半徑為r,
在Rt△OMB中,BM=OB=r,
OM=BM=r,
在Rt△OMF中,OM2+OF2=MF2.
即(r)2+r2=()2,解得r=2,
即⊙O的半徑為2.
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.
請結合以上信息解答下列問題:
(1)m= ;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學生,請你估計該校約有 名學生最喜愛足球活動.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結論的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,四邊形 ABCD 是正方形,點 G 是 BC 上的任意一點,BF AG 于點 F,DE AG于點 E,探究 BF,DE,EF 之間的數(shù)量關系.第一學習小組合作探究后,得到DE–BF= EF,請證明這個結論;
(2)若(1)中的點 G 在 CB 的延長線上,其余條件不變,請在圖②中畫出圖形,并直接寫出此時 BF,DE,EF 之間的數(shù)量關系;
(3)如圖 ③ ,四邊形 ABCD 內接于 ⊙O,AB=AD,E ,F 是AC 上的兩點,且滿足∠AED=∠BFA=∠BCD.試判斷 AC,DE,BF 之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在等邊中,,動點從點出發(fā),沿邊以每秒1個單位的速度向終點運動,同時動點從點出發(fā),以每秒2個單位的速度沿著方向運動.連結,設點運動的時間秒.
(1)用含的代數(shù)式表示線段的長.
(2)當時,求的值.
(3)若的面積為,求與之間的函數(shù)關系式.
(4)如圖②,當點在、之間時,連結,被分割成、、,當其中的某兩個三角形面積相等時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將從1開始的連續(xù)自然數(shù)按圖規(guī)律排列:
列 行 | 第1列 | 第2列 | 第3列 | 第4列 |
第1行 | 1 | 2 | 3 | 4 |
第2行 | 8 | 7 | 6 | 5 |
第3行 | 9 | 10 | 11 | 12 |
第4行 | 16 | 15 | 14 | 13 |
… | … | … | … | … |
第行 | … | … | … | … |
規(guī)定位于第行,第列的自然數(shù)10記為,自然數(shù)15記為…按此規(guī)律,自然數(shù)2018記為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,延長線段AB交y軸于點C,且點B為線段AC中點,過點A作AD⊥x軸于點D,點E為線段OD的三等分點,且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A.﹣12B.﹣10C.﹣9D.﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角△OAB的斜邊OB在x軸上,且OB=4,反比例函數(shù)y=(x>0)的圖象經過OA的中點C,交AB于點D,則點D坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com