科目: 來源: 題型:
【題目】某超市銷售一種商品,每件的成本每千克18元,規(guī)定每千克售價不低于成本,且獲利不得高于100%,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 40 | 39 | 38 | 37 |
銷售量y(千克) | 20 | 22 | 24 | 26 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入﹣成本),并指出售價為多少元時獲得最大利潤,最大利潤是多少?
(3)該超市若想每天銷售利潤不低于480元,請結(jié)合函數(shù)圖象幫助超市確定產(chǎn)品的銷售單價范圍?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P,D分別是BC,AC邊上的點,且∠APD=∠B.
(1)求證:△ABP∽△PCD;
(2)若AB=10,BC=12,當PD∥AB時,求BP的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(,稱為黃金比例),如圖,著名的“斷臂維納斯”便是如此,此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是,若某人的身材滿足上述兩個黃金比例,且頭頂至咽喉的長度為,則其升高可能是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達式;
(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線 y=﹣x2+x+2 與 x 軸交于點 A,B,與 y 軸交于點C.
(1)求 A,B,C的坐標;
(2)直線 l:y=﹣x+2上有一點 D(m,﹣2),在圖中畫出直線 l和點 D,并判斷四邊形ACBD的形狀,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點.
求拋物線的解析式;
點P是拋物線上的一個動點不與點A、點B重合,過點P作直線軸于點D,交直線AB于點E.
當時,求P點坐標;
是否存在點P使為等腰三角形?若存在請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1矩形ABCD中,點E是CD邊上的動點(點E不與點C,D重合),連接AE,過點A作AF⊥AE交CB延長線于點F,連接EF,點G為EF的中點,連接BG.
(1)求證:△ADE∽△ABF;
(2)若AB=20,AD=10,設(shè)DE=x,點G到直線BC的距離為y.
①求y與x的函數(shù)關(guān)系式;②當時,x的值為 ;
(3)如圖2,若AB=BC,設(shè)四邊形ABCD的面積為S,四邊形BCEG的面積為S1,當時,DE:DC的值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】創(chuàng)客聯(lián)盟的隊員想用3D的打印完成一幅邊長為6米的正方形作品ABCD,設(shè)計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打。恢行膮^(qū)是正方形MNPQ,用材料乙打印).在打印厚度保持相同的情況下,兩種材料的消耗成本如表:
材料 | 甲 | 乙 |
價格(元/米2) | 50 | 40 |
設(shè)矩形的較短邊AH的長為x米,打印材料的總費用為y元.
(1)MQ的長為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當中心區(qū)的邊長不小于2米時,預(yù)備資金1700元購買材料一定夠用嗎?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(閱讀理解)對于任意正實數(shù)a、b,
∵≥0,
∴a﹣2+b≥0,
∴a+b≥2,(只有當a=b時,a+b=2).
即當a=b時,a+b取得最小值,且最小值為2.
根據(jù)上述內(nèi)容,回答下列問題:
問題1:若m>0,當m= 時,m+有最小值為 ;
問題2:若函數(shù)y=a+,則當a= 時,函數(shù)y=a+有最小值為 ;
(探索應(yīng)用)已知點Q(﹣3,﹣4)是雙曲線y=上一點,過Q做QA⊥x軸于點A,作QB⊥y軸于點B.點P為雙曲線y=上任意一點,連接PA,PB,求四邊形AQBP的面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com