科目: 來源: 題型:
【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(6)個圖形中面積為1的正方形的個數(shù)為( )
A.14B.20C.24D.27
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx-3 (m≠0)與y軸交于點A,其對稱軸與x軸交于點B,頂點為C點.
(1)求點A和點B的坐標(biāo);
(2)若∠ACB=45°,求此拋物線的表達(dá)式.
查看答案和解析>>
科目: 來源: 題型:
【題目】高考英語聽力測試期間,需要杜絕考點周圍的噪音。如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊。在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即趕往救火。已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛。試問:消防車是否需要改道行駛?說明理由.(取1.732)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩運動員的射擊成績(靶心為10環(huán))統(tǒng)計如下表(不完全):
運動員 \ 環(huán)數(shù) \ 次數(shù) | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同學(xué)計算出了甲的成績平均數(shù)是9,方差是= [(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,
請作答:
(1)若甲、乙射擊成績平均數(shù)都一樣,則a+b= ;
(2)在(1)的條件下,當(dāng)甲比乙的成績較穩(wěn)定時,請列舉出a,b的所有可能取值,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】山西省實驗中學(xué)欲向清華大學(xué)推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖1:
其次,對三名候選人進(jìn)行了筆試和面試兩項測試.各項成績?nèi)绫硭荆?/span>
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖2是某同學(xué)根據(jù)上表繪制的一個不完全的條形圖.請你根據(jù)以上信息解答下列問題:
(1)補全圖1和圖2;
(2)請計算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照2:5:3的比確定,計算三名候選人的平均成績,成績高的將被錄取,應(yīng)該錄取誰?
(4)若學(xué)校決定從這三名候選人中隨機選兩名參加清華大學(xué)夏令營,求甲和乙被選中的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標(biāo)軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)當(dāng)x>0時,比較kx+b與的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,∠DAC=∠B.
(1)求證:CA是⊙O的切線.
(2)在AB上取一點E,若∠BCE=∠B,AB=2AC,求tan∠ACE的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).
古希臘的幾何學(xué)家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長求面積的公式﹣﹣﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴=6
∴S===6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
根據(jù)上述材料,解答下列問題:
如圖,在△ABC中,BC=7,AC=8,AB=9
(1)用海倫公式求△ABC的面積;
(2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點為I,求△ABI的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與實踐:
問題情境:在矩形ABCD中,點E為BC邊的中點,將△ABE沿直線AE翻折,使點B與點F重合,直線AF交直線CD于點G.
特例探究
實驗小組的同學(xué)發(fā)現(xiàn):
(1)如圖1,當(dāng)AB=BC時,AG=BC+CG,請你證明該小組發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)AB=BC=4時,求CG的長;
延伸拓展
(3)實知小組的同學(xué)在實驗小組的啟發(fā)下,進(jìn)一步探究了當(dāng)AB:BC=時,線段AG、BC、CG之間的數(shù)量關(guān)系,請你直接寫出實知小組的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com