科目: 來源: 題型:
【題目】閱讀下面內容,并按要求解決問題: 問題:“在平面內,已知分別有個點,個點,個點,5 個點,…,n 個點,其中任意三 個點都不在同一條直線上.經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個問題,希望小組的同學們設計了如下表格進行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點的一條直線)
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結論:當平面內有個點時,直線條數(shù)為 ;
(2)若某同學按照本題中的方法,共畫了條直線,求該平面內有多少個已知點.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內作內接矩形AMPN.令AM=x.
(1)如圖1、用含x的代數(shù)式表示△MNP的面積S;
(2)如圖2、⊙O與直線BC相切D點,求x的值為多少?
(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某商家為了讓手機銷量更好,更能吸引大家來購買,商家實施一定程度的讓利促銷活動,手機的銷量分別出現(xiàn)不同程度的增長,A品牌手機的銷量每月都比上個月多賣100臺,而B品牌的手機的銷量每月均按照一個相同的百分數(shù)增長,十月份A品牌手機的銷量比B品牌的手機銷量少360臺,十一月份兩種手機的總銷量比十月份兩種手機的總銷量多200臺,十二月份兩種手機的總銷量比十月份兩種手機的總銷量多25%,
(1)求B品牌的手機十一份的銷量比十月份的銷量多多少臺?
(2)求B品牌的手機十月份的銷量是多少臺?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作DE⊥AB,垂足為E.
(1)求證:DE是⊙O的切線.
(2)若DE,∠C=30°,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了扎實推進精準扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、C、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息回答下面的問題:
(1)本次抽樣調查了多少戶貧困戶?
(2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;
(3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?
(4)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.
(1)分別求出直線、雙曲線的函數(shù)表達式.
(2)求出點D的坐標.
(3)利用圖象直接寫出:當x在什么范圍內取值時?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,與軸交于點,拋物線的對稱軸為直線,交拋物線于點,交軸于點.
(1)求拋物線的函數(shù)表達式及點、點的坐標;
(2)拋物線對稱軸上的一動點從點出發(fā),以每秒1個單位的速度向上運動,連接,,設運動時間為秒(),在點的運動過程中,請求出:當為何值時,?
(3)若點在拋物線上、兩點之間運動(點不與點、重合),在運動過程中,設點的橫坐標為,的面積為,求關于的函數(shù)關系式,并求為何值時有最大值,最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種文具,進價為 5(元/件),售價為6(元/件)時,當天的銷售量為100件,在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當天的銷售量就減少5件,設當天銷售單價統(tǒng)一為(元/件)(,且是按0.5元的倍數(shù)上漲),當天銷售利潤為元.
(1)求與的函數(shù)關系式(不要求寫出自變量的取值范圍);
(2)要使當天銷售利潤不低于240元,求當天銷售單價的范圍;
(3)若每件文具的利潤不超過60%,要使當天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com