科目: 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某服裝店出售某品牌的棉衣,進(jìn)價(jià)為100元/件,當(dāng)售價(jià)為150元/件時(shí),平均每天可賣30件;為了盡快減少庫存迎接“元旦”的到來,商店決定降價(jià)銷售,增加利潤,經(jīng)調(diào)查每件降價(jià)5元,則每天可多賣10件,現(xiàn)要想平均每天獲利2000元,且讓顧客得到實(shí)惠,那么每件棉衣應(yīng)降價(jià)多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實(shí)數(shù)k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,O是EG的中點(diǎn),∠EGC的平分線GH過點(diǎn)D,交BE于點(diǎn)H,連接OH,FH,EG與FH交于點(diǎn)M,對(duì)于下面四個(gè)結(jié)論:①GH⊥BE;②BG=EG;③△MFG為等腰三角形;④DE:AB=1+:1,其中正確結(jié)論的序號(hào)為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測(cè)出了A、B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是( )
A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
查看答案和解析>>
科目: 來源: 題型:
【題目】某班“手拉手”數(shù)學(xué)學(xué)習(xí)互助小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究時(shí),遇到以下問題,請(qǐng)你逐一加以解答:
(1)如圖1,正方形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)G,H,則EF GH;(填“>”“=”或“<”)
(2)如圖2,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)G,H,求證: =;
(3)如圖3,四邊形ABCD中,∠ABC=∠ADC=90°,BC=3,CD=5,AD=7.5,AM⊥DN,點(diǎn)M,N分別在邊BC,AB上,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.已知拋物線y=-與其“夢(mèng)想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢(mèng)想直線”的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______.
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017江西。┤鐖D1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的“視線角”α約為20°,而當(dāng)手指接觸鍵盤時(shí),肘部形成的“手肘角”β約為100°.圖2是其側(cè)面簡(jiǎn)化示意圖,其中視線AB水平,且與屏幕BC垂直.
(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長;
(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請(qǐng)判斷此時(shí)β是否符合科學(xué)要求的100°?
(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過點(diǎn)C作CE⊥DB交DB的延長線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.
(1)求證:CF為⊙O的切線;
(2)填空:當(dāng)∠CAB的度數(shù)為________時(shí),四邊形ACFD是菱形.
【答案】30°
【解析】(1)連結(jié)OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;
(2)根據(jù)三角形的內(nèi)角和得到∠F=30°,根據(jù)等腰三角形的性質(zhì)得到AC=CF,連接AD,根據(jù)平行線的性質(zhì)得到∠DAF=∠F=30°,根據(jù)全等三角形的性質(zhì)得到AD=AC,由菱形的判定定理即可得到結(jié)論.
答:
(1)證明:連結(jié)OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)當(dāng)∠CAB的度數(shù)為30°時(shí),四邊形ACFD是菱形,理由如下:
∵∠A=30°,
∴∠COF=60°,
∴∠F=30°,
∴∠A=∠F,
∴AC=CF,
連接AD,
∵AB是⊙O的直徑,
∴AD⊥BD,
∴AD∥CF,
∴∠DAF=∠F=30°,
在△ACB與△ADB中,
,
∴△ACB≌△ADB,
∴AD=AC,
∴AD=CF,
∵AD∥CF,
∴四邊形ACFD是菱形。
故答案為:30°.
【題型】解答題
【結(jié)束】
22
【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在第x天的售價(jià)與銷量的相關(guān)信息如下表;已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com