科目: 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:
一百饅頭一百僧,大僧三個更無爭,
小僧三人分一個,大小和尚得幾。
意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結(jié)果正確的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).
(1)求點A與點B的坐標(biāo);
(2)若a=,點M是拋物線上一動點,若滿足∠MAO不大于45°,求點M的橫坐標(biāo)m的取值范圍.
(3)經(jīng)過點B的直線l:y=kx+b與y軸正半軸交于點C.與拋物線的另一個交點為點D,且CD=4BC.若點P在拋物線對稱軸上,點Q在拋物線上,以點B,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:將函數(shù)l的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新的函數(shù)l'的圖象,我們稱函數(shù)l'是函數(shù)關(guān)于點P的相關(guān)函數(shù).
例如:當(dāng)m=1時,函數(shù)y=(x+1)2+5關(guān)于點P(1,0)的相關(guān)函數(shù)為y=﹣(x﹣3)2﹣5.
(1)當(dāng)m=0時
①一次函數(shù)y=x﹣1關(guān)于點P的相關(guān)函數(shù)為 ;
②點(,﹣)在二次函數(shù)y=﹣ax2﹣ax+1(a≠0)關(guān)于點P的相關(guān)函數(shù)的圖象上,求a的值.
(2)函數(shù)y=(x﹣1)2+2關(guān)于點P的相關(guān)函數(shù)y=﹣(x+3)2﹣2,則m= ;
(3)當(dāng)m﹣1≤x≤m+2時,函數(shù)y=x2﹣mx﹣m2關(guān)于點P(m,0)的相關(guān)函數(shù)的最大值為6,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們定義:兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
例如:某三角形三邊長分別是2,4,,因為,所以這個三角形是奇異三角形.
(1)根據(jù)定義:“等邊三角形是奇異三角形”這個命題是______命題(填“真”或“假命題”);
(2)在中,,,,,且,若是奇異三角形,求;
(3)如圖,以為斜邊分別在的兩側(cè)作直角三角形,且,若四邊形內(nèi)存在點,使得,.
①求證:是奇異三角形;
②當(dāng)是直角三角形時,求的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】好街坊櫥具店購進電飯煲和電壓鍋兩種電器進行銷售,其進價與售價如表:
進價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購進這兩種電器共 30 臺,用去了 5520 元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度櫥具店決定用不超過 8850 元的資金采購電飯煲和電壓鍋共 50 臺,且電飯煲的利潤不少于電壓鍋的利潤的,問櫥具店有哪幾種進貨方案?并說明理由;
(3)在(2)的條件下,請你通過計算判斷,哪種進貨方案櫥具店賺錢最多?
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC 中,∠BAC=90°,AD 是 BC 邊上的中線,點 E 為 AD 的中點,過點 A 作 AF∥BC交 BE 的延長線于點 F,連接 CF.
(1)求證:AD=AF;
(2)填空:①當(dāng)∠ACB= °時,四邊形 ADCF 為正方形;
②連接 DF,當(dāng)∠ACB= °時,四邊形 ABDF 為菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①;②AG=GC;③BE+DF=EF;④.其中正確的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線與軸交于點A和點B(3,0),與軸交于點C(0,3),P是線段BC上一點,過點P作PN∥軸交軸于點N,交拋物線于點M.
(1)求該拋物線的表達式;
(2)如果點P的橫坐標(biāo)為2,點Q是第一象限拋物線上的一點,且△QMC和△PMC的面積相等,求點Q的坐標(biāo);
(3)如果,求tan∠CMN的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com