9.如圖所示,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長(zhǎng)線交⊙O于點(diǎn)F,BP的延長(zhǎng)線交AC于點(diǎn)E.
(1)求證:$\frac{AP}{PC}$=$\frac{FA}{AB}$;
(2)若⊙O的直徑AB=1,求tan∠CPE的值.

分析 (1)由弦切角定理,可得∠PAC=∠F,進(jìn)而可得△APC∽△FAC,結(jié)合AC=AB,和相似三角形對(duì)應(yīng)邊成比例,可證得:$\frac{AP}{PC}$=$\frac{FA}{AB}$.
(2)若⊙O的直徑AB=1,由切割線定理可得PC=$\frac{\sqrt{5}-1}{2}$,進(jìn)而根據(jù)FA∥BE,即∠CPE=∠F,解Rt△FAP可得答案.

解答 證明:(1)∵AC切⊙O于點(diǎn)A,PA是弦,
∴∠PAC=∠F,
∵∠C=∠C,
∴△APC∽△FAC,
∴$\frac{AP}{FA}=\frac{PC}{AC}$,
∵AC=AB,
∴$\frac{AP}{PC}$=$\frac{FA}{AB}$.
解:(2)∵AC切⊙O于點(diǎn)A,CPF為⊙O的割線,
則有AC2=CP•CF=CP(CP+PF),
∵PF=AC=AB=1,
∴PC=$\frac{\sqrt{5}-1}{2}$.
∵FA∥BE,
∴∠CPE=∠F,
∵FP為⊙O的直徑,
∴∠FAP=90°,
由(1)中證得$\frac{AP}{FA}=\frac{PC}{AC}$,
在Rt△FAP中,tan∠F=$\frac{\sqrt{5}-1}{2}$.
∴tan∠CPE=$\frac{\sqrt{5}-1}{2}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)弦切角定理,圓周角定理,相似三角形的判定與性質(zhì),切割線定理,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xoy中,曲線C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2$\sqrt{3}$cosθ.
(I).求C2與C1交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示.
(1)判斷平面BEG與平面ACH的位置關(guān)系.并證明你的結(jié)論;
(2)若正方體棱長(zhǎng)為1,求三棱錐F-BEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=AC=2,AA1=3,點(diǎn)M是B1C1的中點(diǎn).
(1)求證:AB1∥平面A1MC;
(2)求點(diǎn)B到平面A1MC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a為常數(shù),函數(shù)f(x)=xlnx-$\frac{1}{2}$ax2
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2
①求實(shí)數(shù)a的取值范圍;
②求證:x1x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),
(1)當(dāng)k為何值時(shí),k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$垂直?
(2)若$\overrightarrow{AB}$=2$\overrightarrow{a}$+3$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{a}$+m$\overrightarrow$且A、B、C三點(diǎn)共線,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=x2+2(a-1)x在區(qū)間[4,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.a≥-3B.a≤-3C.a≤3D.a≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線l與雙曲線x2-y2=1交于A、B兩點(diǎn),若線段AB的中點(diǎn)為C(2,1),則直線l的斜率為(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.1443與999的最大公約數(shù)是111.

查看答案和解析>>

同步練習(xí)冊(cè)答案