1.若函數(shù)f(x)=x2+2(a-1)x在區(qū)間[4,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.a≥-3B.a≤-3C.a≤3D.a≤5

分析 求出二次函數(shù)f(x)的增區(qū)間,可得[4,+∞)⊆[1-a,+∞),可得1-a≤4,解不等式即可得到所求范圍.

解答 解:函數(shù)f(x)=x2+2(a-1)x的對稱軸為x=1-a,
f(x)的增區(qū)間為[1-a,+∞),
由題意可得[4,+∞)⊆[1-a,+∞),
即有1-a≤4,解得a≥-3.
故選:A.

點評 本題考查函數(shù)的單調(diào)性的運用:求取值范圍,考查二次函數(shù)的單調(diào)區(qū)間的運用,考查不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow{a}=(6,x)$,$\overrightarrow$=(2,-2),且($\overrightarrow{a}-\overrightarrow$)$⊥\overrightarrow$,則x的值是( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知某物體的溫度θ(單位:攝氏度)隨時間t(單位:分鐘)的變化規(guī)律:θ=m•2t+2•$\frac{1}{{2}^{t}}$ (t≥0,并且m>0).
(1)如果m=2,求經(jīng)過多少時間,物體的溫度為5攝氏度;
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.
(1)求證:$\frac{AP}{PC}$=$\frac{FA}{AB}$;
(2)若⊙O的直徑AB=1,求tan∠CPE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)同時滿足:①對于定義域上的任意x,恒有f(x)+f(-x)=0;②對于定義域上的任意x1,x2.當(dāng)x1≠x2時,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.則稱函數(shù)f(x)為“理想函數(shù)”,則下列四個函數(shù)中:①f(x)=$\frac{1}{2}$;②f(x)=x2;③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$;④f(x)=log${\;}_{\frac{1}{2}}$($\sqrt{{x}^{2}+1}$+x)可以稱為“理想函數(shù)”的有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}的通項公式為${a_n}=\left\{{\begin{array}{l}{{2^n}({n為奇數(shù)})}\\{{3^n}({n為偶數(shù)})}\end{array}}\right.$,求數(shù)列{an}前2n項和為S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線(m+2)x-(2m-1)y-(3m-4)=0,恒過定點(-1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)橢圓C的兩個焦點分別為F1、F2,若C上存在點P滿足|PF1|:|F1F2|:|PF2|=4:3:2,則C的離心率等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.計算:(log62)•(log618)+(log63)2 的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案