【題目】如圖①,在正方形的各邊上分別取四點,使,將正方形沿對角線折起,如圖②
(1)證明:圖②中為矩形;
(2)當(dāng)二面角為多大時,為正方形.
【答案】(1)證明見解析;(2)當(dāng)二面角A-BD-C為時,四邊形EFGH為正方形
【解析】
(1)根據(jù)對應(yīng)邊成比例可得EF∥BD,HG∥BD,從而可得EF∥HG,即四邊形EFGH為平行四邊形,設(shè)O為BD的中點,連接AO,CO,BD,利用線面垂直的判定定理可得BD⊥平面AOC,從而可得BD⊥AC,進而可得EF⊥EH,即證.
(2)設(shè)AB=a,可得,由題意只需使EH=HG,根據(jù)比例可得,由∠AOC為二面角A-BD-C的平面角,AO=CO=AC,即可求得二面角A-BD-C為600.
(1)因為AE:EB=AF:FD,所以EF∥BD,
同理可得,HG∥BD,所以EF∥HG;
同理可得EH∥FG,所以四邊形EFGH為平行四邊形,
設(shè)O為BD的中點,連接AO,CO,BD,
BD⊥AO,BD⊥CO,所以BD⊥平面AOC,故BD⊥AC,
又因為BD∥EF,AC∥EH,所以EF⊥EH
所以EFGH為矩形
(2)設(shè)AB=a
則,
要使四邊形EFGH為正方形,只需使EH=HG
,
由(1)可知∠AOC為二面角A-BD-C的平面角,且AO=CO=AC,
所以,當(dāng)二面角A-BD-C為600時,四邊形EFGH為正方形
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)是定義域為的奇函數(shù).
(1)若,試求不等式的解集;
(2)若,且,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有一組圓.下列四個命題正確的是( )
A. 存在,使圓與軸相切
B. 存在一條直線與所有的圓均相交
C. 存在一條直線與所有的圓均不相交
D. 所有的圓均不經(jīng)過原點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點,交曲線于,兩點,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月22日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達到70%和40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴(yán)重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進行實驗,并將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)能否有99.9%把握認為注射此種疫苗對預(yù)防新型冠狀病毒有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點為極點、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;
(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形垂直于直角梯形,,為中點,,.
(1)求證:∥平面;
(2)線段上是否存在點,使與平面所成角的正切值為?若存在,請求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個,已知從袋子中隨機抽取1個小球,取到標(biāo)號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機抽取2個球,記第一次取出小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《情境》劉曉紅同學(xué)在做達標(biāo)訓(xùn)練的課外作業(yè)時,遇到一個如何用五點法作出正弦型函數(shù)在長度為一個周期的閉區(qū)間上的圖象及圖象之間如何進行變換的問題,她犯愁了.
《問題》設(shè)函數(shù)的周期為,且圖象過點.
(1)求與的值;
(2)用五點法作函數(shù)在長度為一個周期的閉區(qū)間上的圖象;
(3)敘述函數(shù)的圖象可由函數(shù)的圖象經(jīng)過怎樣的變換而得到.
由于劉曉紅對上述問題還沒有掌握解決方法及解題概念和步驟,導(dǎo)致無從下手,于是她請教了班上的學(xué)習(xí)委員張倩同學(xué)給她做了如下點撥:
用五點法作出在一個周期的閉區(qū)間上的圖象,首先要列表并分別令相位、、、、,再解出對應(yīng)的、的值,得出坐標(biāo),然后描點,最后畫出圖象.而由函數(shù)的圖象變到函數(shù)的圖象主要有兩種途徑:①按物理量初相,周期,振幅的順序變換;②按物理量周期,初相,振幅的順序變換.要注意兩者操作的區(qū)別,防止出錯.
經(jīng)過張倩耐心而細致的解釋,劉曉紅豁然開朗,并對該題解答如下:
(注意:解答第(3)問時,要按照題中要求,寫出兩種變換過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com