6.對于復(fù)數(shù)z1,z2,如果復(fù)數(shù)(z1-i)•z2=1,那么稱z1是z2的“錯位共軛復(fù)數(shù)”,則復(fù)數(shù)$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的“錯位共軛復(fù)數(shù)”z=( 。
A.$\frac{\sqrt{3}}{2}$+$\frac{3}{2}$iB.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$iC.$\frac{\sqrt{3}}{6}$+$\frac{1}{2}$iD.-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$i

分析 由題意得$(z-i)•(\frac{{\sqrt{3}}}{2}-\frac{1}{2}i)=1$,變形后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:由題意得$(z-i)•(\frac{{\sqrt{3}}}{2}-\frac{1}{2}i)=1$,
∴$z-i=\frac{1}{\frac{\sqrt{3}}{2}-\frac{1}{2}i}=\frac{\frac{\sqrt{3}}{2}+\frac{1}{2}i}{(\frac{\sqrt{3}}{2}-\frac{1}{2}i)(\frac{\sqrt{3}}{2}+\frac{1}{2}i)}=\frac{\sqrt{3}}{2}+\frac{1}{2}i$,
得$z=\frac{{\sqrt{3}}}{2}+\frac{3}{2}i$,
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx)-$\frac{1}{2}$|sinx-cosx|+1,則f(x)的值域是( 。
A.[0,2]B.[1-$\frac{\sqrt{2}}{2}$,2]C.[0,1-$\frac{\sqrt{2}}{2}$]D.[0,1+$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1、F2,左右頂點分別為A1,A2,P是雙曲線左支上任意一點,則分別以線段PF2,A1A2為直徑的兩圓位置關(guān)系為( 。
A.內(nèi)切B.外切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知正項等比數(shù)列{an}{n∈N*},首項a1=3,前n項和為Sn,且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知tanα=3,則$\frac{sinα+2cosα}{sinα-2cosα}$的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,△ABC的外接圓的圓心為O,AB=4,AC=6,BC=7,則$\overrightarrow{AO}$•$\overrightarrow{BC}$等于( 。
A.6B.10C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.集合A,B滿足條件A∩B≠∅,A∪B={1,2,3,4,5},當(dāng)A≠B時,我們將(A,B)和(B,A)視為兩個不同的集合對,則滿足條件的集合對(A,B)共有211個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={x|(x-1)2<3x+7,x∈R},則集合A∩N*中元素的個數(shù)是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項和為Sn,an+Sn=2,n∈N*.求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案