11.如圖,△ABC的外接圓的圓心為O,AB=4,AC=6,BC=7,則$\overrightarrow{AO}$•$\overrightarrow{BC}$等于( 。
A.6B.10C.16D.20

分析 作OD⊥AB于D,OE⊥AC于E,根據(jù)向量數(shù)量積的幾何意義即可得到答案

解答  解:如右圖,過O作OD⊥AB于D,OE⊥AC于E,
則$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overline{AO}$•($\overrightarrow{AC}-\overrightarrow{AB}$)=$\overrightarrow{AO}•\overrightarrow{AC}$-$\overrightarrow{AO}•\overrightarrow{AB}$
=($\overrightarrow{AE}+\overrightarrow{EO}$)$•\overrightarrow{AC}$-($\overrightarrow{AD}+\overrightarrow{DO}$)$•\overrightarrow{AB}$,
=$\frac{1}{2}$${\overrightarrow{AC}}^{2}$-$\frac{1}{2}{\overrightarrow{AB}}^{2}$,
=$\frac{1}{2}$(36-16),
=10.
故選:B.

點評 本小題主要考查向量在幾何中的應(yīng)用等基礎(chǔ)知識,解答關(guān)鍵是利用向量數(shù)量積的幾何意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中為奇函數(shù)的是( 。
A.y=sin|x|B.y=sin2xC.y=-sinx+2D.y=sinx+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確的個數(shù)是命題( 。
①命題“若cosx=cosy,則x=y”的逆否命題是真命題;
②命題“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;
③若命題p為真,命題?q為真,則命題p且q為真.
④命題“若x=3,則x2-2x-3=0”的否命題是“x≠3,則x2-2x-3≠0”
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z=(m+1)-(m-3)i在復(fù)平面內(nèi)對應(yīng)的點在第一或第三象限,則實數(shù)m的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對于復(fù)數(shù)z1,z2,如果復(fù)數(shù)(z1-i)•z2=1,那么稱z1是z2的“錯位共軛復(fù)數(shù)”,則復(fù)數(shù)$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的“錯位共軛復(fù)數(shù)”z=( 。
A.$\frac{\sqrt{3}}{2}$+$\frac{3}{2}$iB.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$iC.$\frac{\sqrt{3}}{6}$+$\frac{1}{2}$iD.-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+2ax+blnx在(1,f(1))處的切線方程為x-y+1=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=m[f(x)-x2+3lnx]+x2
①若函數(shù)y=g(x)上的點都在第一象限,求實數(shù)m的取值范圍;
②求證:對任意的自然數(shù)n(n≥2),不等式$\sqrt{2}$•$\root{3}{3}$•$\root{4}{4}$•$\root{5}{5}$…$\root{n}{n}$<e${\;}^{\frac{n(n-1)}{2}}$成立(其中e=2.71828…為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合M={α|α=sin$\frac{(5m-9)π}{3}$,m∈Z},N={β|β=cos$\frac{5(9-2n)π}{6}$,n∈Z},則M與N的關(guān)系是( 。
A.M?NB.M?NC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點F1(-1,0),F(xiàn)2(1,0),動點P到點F1,F(xiàn)2的距離和等于4.
(Ⅰ)試判斷點P的軌跡C的形狀,并寫出其方程;
(Ⅱ)若曲線C與直線m:y=x-1相交于A、B兩點,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從5本不同的文藝書和6本不同的科技書中任取3本,則文藝書和科技書都至少有1本的不同取法共有( 。
A.(C${\;}_{11}^{3}$-C${\;}_{5}^{3}$)種B.(C${\;}_{5}^{1}$C${\;}_{6}^{2}$+C${\;}_{5}^{2}$C${\;}_{6}^{1}$)種
C.(C${\;}_{11}^{3}$-C${\;}_{6}^{3}$)種D.(C${\;}_{5}^{1}$C${\;}_{6}^{1}$+C${\;}_{10}^{1}$)種

查看答案和解析>>

同步練習(xí)冊答案