7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{\sqrt{3}π}{4}$;表面積為$\frac{9π}{4}+\sqrt{3}$.

分析 根據(jù)三視圖可得幾何體是圓錐,判斷幾何體的直觀圖,判斷圓錐的底面半徑以及高,代入圓錐體積,求解表面積.

解答 解:由題意可知:幾何體是圓錐去掉$\frac{1}{4}$個(gè)圓錐,圓錐的底面半徑為:1;高為:$\sqrt{3}$;
圓錐的母線為:2,
幾何體的體積為:$\frac{3}{4}×\frac{1}{3}×{1}^{2}π×\sqrt{3}$=$\frac{\sqrt{3}π}{4}$.
幾何體的表面積為:$\frac{3}{4}×{1}^{2}π$$+\frac{3}{4}×\frac{1}{2}×2π×2$$+2×\frac{1}{2}×1×\sqrt{3}$=$\frac{9π}{4}+\sqrt{3}$.
故答案為:$\frac{\sqrt{3}π}{4}$;$\frac{9π}{4}+\sqrt{3}$.

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的表面積與體積,解答此類(lèi)問(wèn)題的關(guān)鍵是判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某企業(yè)員工共500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第一組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
(1)表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;
(2)根據(jù)頻率分布直方圖,估算該企業(yè)員工的平均年齡及年齡的中位數(shù);
(3)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=9-8cosx-2sin2x的最大值是17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且經(jīng)過(guò)點(diǎn)M(2,$\sqrt{2}$).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為N,P是橢圓上異于M,n的任意一點(diǎn),若直線MP,NP分別交x軸于點(diǎn)A(m,0),B(n,0),請(qǐng)問(wèn)mn是否為定值,若是,求出點(diǎn)該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.平面上三個(gè)力$\overrightarrow{{F}_{1}}$、$\overrightarrow{{F}_{2}}$、$\overrightarrow{{F}_{3}}$作用于一點(diǎn)且處于平衡狀態(tài),|$\overrightarrow{{F}_{1}}$|=1(N),|$\overrightarrow{{F}_{2}}$|=$\frac{\sqrt{6}+\sqrt{2}}{2}$(N),$\overrightarrow{{F}_{1}}$與$\overrightarrow{{F}_{2}}$的夾角為45°,將$\overrightarrow{{F}_{1}}$的起點(diǎn)放在原點(diǎn),終點(diǎn)在x軸的正半軸,$\overrightarrow{{F}_{2}}$的終點(diǎn)放在第一象限內(nèi).
(1)$\overrightarrow{{F}_{3}}$的大小;
(2)求$\overrightarrow{{F}_{1}}$與$\overrightarrow{{F}_{3}}$的夾角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知拋物線y=$\frac{1}{2}$x2的焦點(diǎn)與橢圓$\frac{y^2}{m}$+$\frac{x^2}{2}$=1的一個(gè)焦點(diǎn)重合,則m=( 。
A.$\frac{7}{4}$B.$\frac{127}{64}$C.$\frac{9}{4}$D.$\frac{129}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)A(0,3),離心率e=$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過(guò)A點(diǎn)的直線l被橢圓C截得的弦長(zhǎng)|AB|=$\frac{24\sqrt{2}}{7}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.四面體ABCD的外接球?yàn)镺,AD⊥平面ABC,AD=2,△ABC為邊長(zhǎng)為3的正三角形,則球O的表面積為( 。
A.32πB.16πC.12πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)點(diǎn)P(2,3),并且在兩坐標(biāo)軸上的截距相等的直線方程是( 。
A.x-y+1=0B.x-y+1=0或3x-2y=0
C.x+y-5=0D.x+y-5=0或3x-2y=0

查看答案和解析>>

同步練習(xí)冊(cè)答案