【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=( x
(1)求函數(shù)f(x)的解析式;
(2)在所給坐標(biāo)系中畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間.

【答案】
(1)解:∵f(x)是定義在R上的奇函數(shù),

∴f(0)=0,

當(dāng)x<0時(shí),則﹣x>0,

∴f(x)=﹣f(﹣x)= =﹣2x

∴函數(shù)的解析式為f(x)=


(2)解:函數(shù)圖象如圖所示:

通過(guò)函數(shù)的圖象可以知道,f(x)的單調(diào)遞減區(qū)間是(﹣∞,0),(0,+∞)


【解析】(1)利用函數(shù)的奇偶性求函數(shù)f(x)的解析式;(2)根據(jù)函數(shù)的表達(dá)式作出函數(shù)的圖象,根據(jù)函數(shù)的圖象寫出函數(shù)的單調(diào)區(qū)間.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)圖象的作法的相關(guān)知識(shí),掌握?qǐng)D象的作法與平移:①據(jù)函數(shù)表達(dá)式,列表、描點(diǎn)、連光滑曲線;②利用熟知函數(shù)的圖象的平移、翻轉(zhuǎn)、伸縮變換;③利用反函數(shù)的圖象與對(duì)稱性描繪函數(shù)圖象,以及對(duì)函數(shù)單調(diào)性的判斷方法的理解,了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),
(1)求f(x)的表達(dá)式;
(2)判斷并證明函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上兩點(diǎn),則有(其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有=___________.(其中VP-ABE、VP-CDF分別為四面體P-ABE、P-CDF的體積)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中.

(1)若,且曲線處的切線過(guò)原點(diǎn),求直線的方程;

(2)求的極值;

(3)若函數(shù)有兩個(gè)極值點(diǎn), ,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在原點(diǎn),焦點(diǎn)分別在軸與軸上,它們有相同的離心率,并且的短軸為的長(zhǎng)軸,的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積是.

(1)求橢圓的方程;

(2)設(shè)是橢圓上非頂點(diǎn)的動(dòng)點(diǎn),與橢圓長(zhǎng)軸兩個(gè)頂點(diǎn)的連線,分別與橢圓交于,點(diǎn).

(i)求證:直線斜率之積為常數(shù);

(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成,.

(1)證明:平面平面;

(2)求正四棱錐的高,使得該四棱錐的體積是三棱錐體積的4倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在實(shí)數(shù)m>n>2,使得函數(shù)y=h(x)的定義域?yàn)閇n,m],值域?yàn)閇n2 , m2],若存在,求出m、n的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) +cos2x+a(a∈R,a為常數(shù)). (Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若 時(shí),f(x)的最小值為﹣2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f′(x)sinx+f(x)cosx>0且f( )=1,則f(x)sinx≤1的整數(shù)解的集合為

查看答案和解析>>

同步練習(xí)冊(cè)答案