設(shè)函數(shù)f(x)=n-1,x∈[n,n+1),n∈N,函數(shù)g(x)=log2x,則方程f(x)=g(x)實數(shù)根的個數(shù)是( 。
A、1個B、2個C、3個D、4個
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:此題考查的是根的存在性與根的個數(shù)判斷問題.在解答的過程當中可以通過畫圖觀察解決,也可以通過對自然數(shù)n逐一取值進行驗證獲得解答.
解答: 解:根據(jù)題意,詳細畫出f(x)和g(x)在同一坐標系中函數(shù)圖象,

①當n=0時,f(x)=-1,x∈[0,1),則log2x=-1⇒x=
1
2
∈[0,1)
②當n=1時,f(x)=0,x∈[1,2),則log2x=0⇒x=1∈[1,2)
③當n=2時,f(x)=1,x∈[2,3),則log2x=1⇒x=2∈[2,3)
④當n=3時,f(x)=2,x∈[3,4),則log2x=2⇒x=4∉[3,4)
⑤當n=4時,f(x)=3,x∈[4,5),則log2x=3⇒x=8∉[4,5)
由此下區(qū)x的解成指數(shù)增長,而區(qū)間成正比增長,故以后沒有根了,
即有3個根.
故選:C.
點評:此題考查的是根的存在性與根的個數(shù)判斷問題.在解答的過程當中充分體現(xiàn)了數(shù)形結(jié)合的思想、分類討論的思想以及問題轉(zhuǎn)化的思想.值得同學(xué)們體會反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當實數(shù)x,y滿足
x+2y-4≤0
x-y-1≤0
x≥1
時,1≤x+ay≤5恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
π
2
0
cosxdx
,在二項式(x2-
a
x
)5
的展開式中,x的一次項系數(shù)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=2,AC=4.DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
(Ⅰ)求證:BC⊥平面A1DC;
(Ⅱ)若CD=2,求平面A1BE與平面A1BC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一家5口春節(jié)回老家探親,買到了如下圖的一排5張車票:

其中爺爺行動不便要坐靠近走廊的位置,小孫女喜歡熱鬧要坐在左側(cè)三個連在一起的座位之一,則座位的安排方式一共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是函數(shù)y=log2x的反函數(shù),
(Ⅰ)求y=f(x)的解析式.
(Ⅱ)若x∈(0,+∞),試分別寫出使不等式
(。﹍og2x<2x<x2
(ⅱ)log2x<x2<2x成立自變量x的取值范圍
(Ⅲ)求不等式loga(x-3)>loga(5-x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,CA=CB=3,M,N是斜邊AB上的兩個動點,且MN=
2
,則
CM
CN
的取值范圍為( 。
A、[2,
5
2
]
B、[2,4]
C、[3,6]
D、[4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax+3•ex的圖象存在與直線2x-4y+1=0垂直的切線,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線x2=-y+8與x軸交于A、B兩點,動點P與A、B連線的斜率之積為-
1
2

(1)求動點P的軌跡C的方程;
(2)MN是動點P的軌跡C的一條弦,且直線OM、ON的斜率之積為-
1
2

①求OM•ON的最大值;②求△OMN的面積.

查看答案和解析>>

同步練習(xí)冊答案