11.用符號“∈”或“∉”填空.
3∈N,0∉∅,$\frac{1}{3}$∉Z,3∈{1,3,5}.

分析 直接利用元素與集合,寫出結(jié)果即可.

解答 解:3∈N,0∉∅,$\frac{1}{3}$∉Z,3∈{1,3,5}.
故答案為:∈,∉,∉,∈.

點評 本題考查元素與集合的包含關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:
(1)C${\;}_{n+1}^{1}$+2C${\;}_{n+1}^{2}$+3C${\;}_{n+1}^{3}$+…+(n+1)C${\;}_{n+1}^{n+1}$=(n+1)•2n
(2)2<(1+$\frac{1}{n}$)n<3(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.計算log${\;}_{\sqrt{2}}$(2$\sqrt{2}$)-log${\;}_{(\sqrt{2}-1)}$(3-2$\sqrt{2}$)+eln2的值為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式x2-4x-5≤0的解集用區(qū)間表示為[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式|2x-1|≤3的整數(shù)解組成的集合為( 。
A.{0,1}B.{-1,0,1}C.{-1,0,1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)不等式$\frac{x}{4-x}$≥0的解集為集合A,且關(guān)于x的不等式|x+a-$\frac{3}{2}$|≤$\frac{1}{2}$解集為集合B.
(1)若A∪B=A,求實數(shù)a的取值范圍;
 (2)若A⊆(∁RB);求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列計算錯誤的是(  )
A.5x3-x3=4x3B.3m•2n=6m+nC.am+am=2amD.xn+1•x=xn+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x<0,則2015-x-$\frac{4}{x}$的最小值為(  )
A.2013B.2014C.2017D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項$\underset{之}{•}$$\underset{積}{•}$為Tn,且Tn=1-an,(n∈N*
(I)求a1,并證明數(shù)列{$\frac{1}{1-{a}_{n}}$}是等差數(shù)列;
(Ⅱ)設(shè)Sn=T${\;}_{1}^{2}$+T${\;}_{2}^{2}$+…+T${\;}_{n}^{2}$,求證:$\frac{1}{2}$-$\frac{1}{n+2}$<Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案