【題目】如圖,四棱錐的底面是正方形,平面.

1)證明:平面;

2)若,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)由平面及底面是正方形可證得平面,,又由,即可求證;

2)以為原點(diǎn),分別以所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,由(1)可知為平面的一個(gè)法向量,求得平面的一個(gè)法向量,進(jìn)而利用數(shù)量積求解即可

1)證明:因?yàn)?/span>平面,平面,

所以,

因?yàn)榈酌?/span>是正方形,所以,

,所以平面,

因?yàn)?/span>平面,所以,

又因?yàn)?/span>,平面,

所以平面

2)因?yàn)?/span>平面,底面為正方形,

所以,以為原點(diǎn),分別以所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖所示),

設(shè),則,

因?yàn)?/span>,所以中點(diǎn),所以,

所以,

由(1)得為平面的一個(gè)法向量,

設(shè)平面的一個(gè)法向量為,

,,,則,所以,

因此,

由圖可知二面角的大小為鈍角,

故二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬(wàn)有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線一點(diǎn)作兩條直線分別交拋物線于,當(dāng)斜率存在且傾斜角互補(bǔ)時(shí)

值;

直線上的截距時(shí),面積最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

)證明:BD⊥PC

)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】明初出現(xiàn)了一大批杰出的騎兵將領(lǐng),比如徐達(dá)、常遇春、李文忠、藍(lán)玉和朱棣.明初騎兵軍團(tuán)擊敗了不可一世的蒙古騎兵,是當(dāng)時(shí)世界上最強(qiáng)騎兵軍團(tuán).假設(shè)在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領(lǐng),善用騎兵的將領(lǐng)有5人;元軍有8位將領(lǐng),善用騎兵的有4人.

1)現(xiàn)從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),求至多有3名是善用騎兵的將領(lǐng)的概率;

2)在明軍和元軍的將領(lǐng)中各隨機(jī)選取2人,為善用騎兵的將領(lǐng)的人數(shù),寫出的分布列,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“創(chuàng)文創(chuàng)衛(wèi)”活動(dòng)中,某機(jī)構(gòu)為了解一小區(qū)成年居民“吸煙與性別”是否有關(guān).從該小區(qū)中隨機(jī)抽取200位成年居民,得到下邊列聯(lián)表:已知在全部200人中隨機(jī)抽取1人,抽到不吸煙的概率為0.75.

吸煙

不吸煙

合計(jì)

40

90

合計(jì)

200

(1)補(bǔ)充上面的列聯(lián)表,并判斷:能否有99.9%的把握認(rèn)為“吸煙與性別”有關(guān);

(2)用分層抽樣的方法從吸煙居民中選5人出來,然后再?gòu)闹谐?/span>2人出來,給小區(qū)居民談?wù)勎鼰煹奈:π裕笄『贸榈健耙荒幸慌钡母怕?

參考公式: .

參考數(shù)據(jù):

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得Snam,則稱數(shù)列{an}S數(shù)列

1S數(shù)列的任意一項(xiàng)是否可以寫成其某兩項(xiàng)的差?請(qǐng)說明理由.

2)①是否存在等差數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說明;若不存在,請(qǐng)說明理由.

②是否存在正項(xiàng)遞增等比數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本萬(wàn)元,當(dāng)年產(chǎn)量小于萬(wàn)件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.

1)寫出年利潤(rùn)(萬(wàn)年)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)

2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?

(取.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)整數(shù)數(shù)列{an}共有2n)項(xiàng),滿足,,且).

(1)當(dāng)時(shí),寫出滿足條件的數(shù)列的個(gè)數(shù);

(2)當(dāng)時(shí),求滿足條件的數(shù)列的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案