【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

【答案】D

【解析】

本題在正確理解題意的基礎(chǔ)上,將有關(guān)式子代入給定公式,建立的方程,解方程、近似計(jì)算.題目所處位置應(yīng)是“解答題”,但由于題干較長(zhǎng),易使考生“望而生畏”,注重了閱讀理解、數(shù)學(xué)式子的變形及運(yùn)算求解能力的考查.

,得

因?yàn)?/span>

所以,

解得

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬元,為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(xN*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤(rùn)為10(a﹣0.8x%)萬元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高0.4x%.

(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

2)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來1000名員工創(chuàng)遣的年總利潤(rùn)條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則a的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)局部對(duì)稱點(diǎn)”.

1,其中,試判斷是否有局部對(duì)稱點(diǎn)?若有,請(qǐng)求出該點(diǎn);若沒有,請(qǐng)說明理由;

2)若函數(shù)在區(qū)間內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍;

3)若函數(shù)R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合

1)若,求的取值范圍.

2)若,且為整數(shù)集合),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)上,常用符號(hào)來表示算式,如記=,其中,.

1,,,…,成等差數(shù)列,且,求證:

2,,記,且不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)已知該廠技改前,100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

,參考數(shù)值:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案