19.曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1,則C的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).

分析 曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1展開化為直角坐標(biāo)方程,利用斜率的意義及其直線所過的點(diǎn)即可得出 參數(shù)方程.

解答 解:曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1展開為$\frac{1}{2}ρcosθ+\frac{\sqrt{3}}{2}ρsinθ$=1,
∴直角坐標(biāo)方程為:$x+\sqrt{3}y$-2=0.
可得參數(shù)方程為:$\left\{\begin{array}{l}{x=2-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
故答案為:$\left\{\begin{array}{l}{x=2-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).

點(diǎn)評(píng) 本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程、直線的參數(shù)方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$f(x)=\left\{{\begin{array}{l}{{2^{x-2}}}\\{a-x}\end{array}}\right.$ $\begin{array}{l}{x>1}\\{0≤x<1}\end{array}$,且$f({\frac{f(2)}{2}})=\frac{1}{2}$,則實(shí)數(shù)a=( 。
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面是邊長為1的正方形,PD⊥底面ABCD,PD=AD,E為PC的中點(diǎn),F(xiàn)為PB上一點(diǎn),且EF⊥PB.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD;
(3)求三棱錐B-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.由函數(shù)f(x)=sin2x的圖象得到g(x)=cos(2x-$\frac{π}{3}$)的圖象,可將f(x)的圖象(  )
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向右平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù) y=cos2x+2cosx的值域是( 。
A.[-1,3]B.$[-\frac{3}{2},3]$C.$[-\frac{3}{2},-1]$D.$[\frac{3}{2},3]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在正方體ABCD-A1B1C1D1中,直線A1C與BD所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點(diǎn),AB=2,$A{A_1}=AC=BC=\sqrt{2}$
(1)證明:BC1∥平面A1CD;
(2)求異面直線BC1和A1D所成角的大;
(3)求三棱錐A1-DEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線l經(jīng)過(2,-3)和(-10,6)兩點(diǎn),則點(diǎn)(-1,1)到直線l的距離為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{6}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在數(shù)列{an}中,a1=1,an+1=2an+2n,設(shè)bn=$\frac{{a}_{n}}{{2}^{n-1}}$.
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案