分析 (1)連接AC交BD于點G,連接EG.通過中位線定理及線面平行的判定定理即得結(jié)論;
(2)證明DE⊥平面PBC,可得DE⊥PB,又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD;
(3)利用等體積法,求三棱錐B-ADF的體積.
解答 證明:(1)連接AC交BD于點G,連接EG.(1分)
因為四邊形ABCD是正方形,所以點G是AC的中點,
又因為E為PC的中點,因此EG∥PA.(2分)
而EG?平面EDB,所以PA∥平面EDB.(3分)
(2)證明:∵PD⊥底面ABCD且DC?底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,
∴DE⊥PC①
同樣由PD⊥底面ABCD,得PD⊥BC
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC
而DE?平面PDC,∴BC⊥DE②
由①和②推得DE⊥平面PBC
而PB?平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD…(8分)
(3)解:過點F作FH∥PD,交BD于H.
因為PD⊥底面ABCD,F(xiàn)H∥PD,所以FH⊥底面ABCD.
由題意,可得$PB=\sqrt{3}$,$PC=\sqrt{2}$,$PE=\frac{{\sqrt{2}}}{2}$.
由Rt△PFE∽Rt△PCF,得$\frac{PF}{PE}=\frac{PC}{PB}$,$PF=\frac{PE•PC}{PB}=\frac{{\sqrt{3}}}{3}$.
由Rt△BFH∽Rt△BPD,得$\frac{BF}{BP}=\frac{FH}{PD}$,$FH=\frac{BF•PD}{BP}=\frac{2}{3}$.
所以${V_{F-ABD}}=\frac{1}{3}{S_{△ABD}}•FH=\frac{1}{3}×\frac{1}{2}×1×1×\frac{2}{3}=\frac{1}{9}$,(11分)
所以${V_{B-ADF}}={V_{F-ABD}}=\frac{1}{9}$,即三棱錐B-ADF的體積為$\frac{1}{9}$…(12分)
點評 本題考查間中線面垂直、線面平行的判定定理,三棱錐B-ADF的體積,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{11}{12}$ | D. | $\frac{23}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 4 | C. | -1 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com