1.若點(diǎn)E,F(xiàn),G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn).則空間四邊形的四條邊與兩條對(duì)角線中與平面EFGH平行的條數(shù)為(  )
A.0B.1C.2D.3

分析 利用中位線的性質(zhì),判斷四邊形EFGH為平行四邊形,然后利用線面平行的條件進(jìn)行判斷即可.

解答 解:因?yàn)镋、F、G、H分別是四面體ABCD的邊AB、BC、CD、DA的中點(diǎn),
所以EH,F(xiàn)G分別是各三角形的中位線,所以EH∥BD,F(xiàn)G∥BD,所以EH∥FG.
同理EF∥HG,
即四邊形EFGH為平行四邊形.
所以和四邊形EFGH平行是棱有AC和BD.
故選:C.

點(diǎn)評(píng) 本題主要考查線面平行的判斷和應(yīng)用,利用中位線的性質(zhì)得到四邊形EFGH是平行四邊形是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖是一個(gè)程序框圖,則輸出的S的值是( 。
A.14B.15C.31D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求與兩平行線l1:3x+4y-10=0和l2:3x+4y-12=0距離相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若x.y均為正實(shí)數(shù),且x+2y=4,則$\frac{{x}^{2}}{x+2}$+$\frac{2{y}^{2}}{y+1}$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知點(diǎn)A(2,4)在冪函數(shù)y=f(x)的圖象上,也在函數(shù)g(x)=f(x)+$\frac{a}{{x}^{3}}$-1
(1)求函數(shù)g(x)的圖象在點(diǎn)A處的切線與坐標(biāo)軸圍成的三角形的面積;
(2)若函數(shù)h(x)=mf(x)-g(x)-1nx在[1,5]上單調(diào)遞增,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在等比數(shù)列{an}中,公比q=2,前87項(xiàng)和S87=140,則a3+a6+a9+…+a87等于80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求證:cos($\frac{3}{2}$π-α)=-sinα,sin($\frac{3}{2}$π-α)=-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
p:f(x)=m+2x為定義在[-1,2)上的“局部奇函數(shù)”:
q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點(diǎn);
若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.一個(gè)非空集合A中的元素a滿足:a∈N,且4-a∈A,則滿足條件的集合A的個(gè)數(shù)有( 。
A.6B.7C.8D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案