分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的定義域和值域,求得當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的取值范圍.
解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+ϕ)(A,ω,ϕ為常數(shù),且A>0,ω>0,0<ϕ<π)的部分圖象,
可得A=$\sqrt{3}$,$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖,可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$).
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),2x+$\frac{π}{3}$∈[$\frac{π}{3}$ $\frac{4π}{3}$,],sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$ 1],
∴f(x)∈[-$\frac{3}{2}$,$\sqrt{3}$].
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的2倍,然后再向左平移$\frac{π}{6}$個(gè)單位 | |
B. | 將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的2倍,然后再向右平移$\frac{π}{6}$個(gè)單位 | |
C. | 將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的$\frac{1}{2}$,然后再向右平移$\frac{π}{12}$個(gè)單位 | |
D. | 將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的$\frac{1}{2}$,然后再向左平移$\frac{π}{12}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 大前提錯(cuò)誤 | B. | 小前提錯(cuò)誤 | ||
C. | 推理形式錯(cuò)誤 | D. | 大前提與推理形式都錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限 | B. | |z|=$\sqrt{2}$ | ||
C. | z的虛部是i | D. | z的實(shí)部是1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com