【題目】某校為了解畢業(yè)班學(xué)業(yè)水平考試學(xué)生的數(shù)學(xué)考試情況,抽取了該校100名學(xué)生的數(shù)學(xué)成績(jī),將所有數(shù)據(jù)整理后,畫出了樣頻率分布直方圖(所圖所示),若第1組第9組的頻率各為x.
(1)求x的值,并估計(jì)這次學(xué)業(yè)水平考試數(shù)學(xué)成績(jī)的眾數(shù);
(2)若全校有1500名學(xué)生參加了此次考試,估計(jì)成績(jī)?cè)赱80,100)分內(nèi)的人數(shù).
【答案】(1),眾數(shù)為(分);(2)1050(人)
【解析】
(1)根據(jù)所有的頻率之和等于1,求x的值,用每一組的平均值乘以該組的頻率,相加即得所求這次學(xué)業(yè)水平考試數(shù)學(xué)成績(jī)的平均數(shù)的估計(jì)值.
(2)由圖可知樣本數(shù)據(jù)在[80,100)分內(nèi)的頻率,用全校的總?cè)藬?shù)乘以此頻率,即可求得此次考試中成績(jī)?cè)?/span>[80,100)內(nèi)的人數(shù).
解:(1),
由圖可知這次學(xué)業(yè)水平考試數(shù)學(xué)成績(jī)的眾數(shù)為:(分);
(2)由圖可知樣本數(shù)據(jù)在[80,100)分內(nèi)的頻率為(0.02+0.054+0.036+0.03)×5=0.7,
則可以估計(jì)此次考試中成績(jī)?cè)?/span>[80,100)內(nèi)的人數(shù)為1500×0.7=1050(人).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
Ⅱ若對(duì)于都有成立,試求a的取值范圍;
Ⅲ記當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底, 為常數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)對(duì)于函數(shù)和,若存在常數(shù),對(duì)于任意,不等式都成立,則稱直線是函數(shù)的分界線,設(shè),問函數(shù)與函數(shù)是否存在“分界線”?若存在,求出常數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)計(jì)算裝置有兩個(gè)數(shù)據(jù)輸入端口I,II與一個(gè)運(yùn)算結(jié)果輸出端口III,當(dāng)I,II分別輸入正整數(shù)時(shí),輸出結(jié)果記為且計(jì)算裝置運(yùn)算原理如下:
①若I,II分別輸入則
②若I輸入固定的正整數(shù)II輸入的正整數(shù)增大則輸出的結(jié)果比原來增大
③若II輸入I輸入正整數(shù)增大則輸出結(jié)果為原來的倍.則(1) = 為正整數(shù));(2)(1)f(m,1)=__,(2)若由f(m,1)得出f(m,n),則滿足f(m,n)=30的平面上的點(diǎn)(m,n)的個(gè)數(shù)是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:,直線l:.
若直線l與圓O交于不同的兩點(diǎn)A、B,當(dāng)為銳角時(shí),求k的取值范圍;
若,P是直線l上的動(dòng)點(diǎn),過P作圓O的兩條切線PC、PD,切點(diǎn)為C、D,則直線CD是否過定點(diǎn)?若是,求出定點(diǎn),并說明理由.
若EF、GH為圓O的兩條相互垂直的弦,垂足為,求四邊形EGFH的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)參加期末考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(滿分為100分),將數(shù)學(xué)成績(jī)進(jìn)行分組,并根據(jù)各組人數(shù)制成如下頻率分布表:
(1)寫出的值,并估計(jì)本次考試全年級(jí)學(xué)生的數(shù)學(xué)平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)現(xiàn)從成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選出兩名同學(xué),從成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選一名同學(xué),共三名同學(xué)參加學(xué)習(xí)習(xí)慣問卷調(diào)查活動(dòng).若同學(xué)的數(shù)學(xué)成績(jī)?yōu)?3分,同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>分,求兩同學(xué)恰好都被選出的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,AB AC,點(diǎn)E,F分別在棱BB1,CC1上(均異于端點(diǎn)),且∠ABE∠ACF,AE⊥BB1,AF⊥CC1.
求證:(1)平面AEF⊥平面BB1C1C;
(2)BC //平面AEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com