13.已知函數(shù)y=loga(x-1)+3,(a>0且a≠1)的圖象恒過(guò)點(diǎn)P,則P的坐標(biāo)是(2,3),若角α的終邊經(jīng)過(guò)點(diǎn)P,則sin2α-sin2α的值等于$-\frac{3}{13}$.

分析 令x-1=1求出x和y,可求出函數(shù)y=loga(x-1)+3圖象過(guò)的定點(diǎn)P的坐標(biāo),由三角函數(shù)的定義求出sinα、cosα,由二倍角的正弦公式化簡(jiǎn)所求的式子,將數(shù)據(jù)代入計(jì)算即可.

解答 解:令x-1=1得,x=2,則此時(shí)y=loga1+3=3,
∴函數(shù)y=loga(x-1)+3的圖象過(guò)定點(diǎn)P(2,3),
∵角α的終邊經(jīng)過(guò)點(diǎn)P,∴sinα=$\frac{3}{\sqrt{{2}^{2}+{3}^{2}}}$=$\frac{3}{\sqrt{13}}$,cosα=$\frac{2}{\sqrt{13}}$,
∴sin2α-sin2α=sin2α-2sinαcosα=$\frac{9}{13}-2×\frac{3}{\sqrt{13}}×\frac{2}{\sqrt{13}}$=$-\frac{3}{13}$,
故答案為:(2,3);$-\frac{3}{13}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)圖象過(guò)定點(diǎn)的問(wèn)題,任意角的三角函數(shù)定義,以及二倍角的正弦公式的應(yīng)用,難度。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)P(x)=x+a,q(x)=lnx,f(x)=p(x)q(x)-p(x)+2a.
(Ⅰ)設(shè)g(x)=f′(x),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>0時(shí),q(2x+1)≤2ap(x)-2a2+a+1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)已知任意a>0,存在0<x<a,使得a+xlnx>0.試研究a>0時(shí)函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=f(x)為定義在[-2,2]上的可導(dǎo)的偶函數(shù),當(dāng)0≤x≤2時(shí),f′(x)>4,且f(1)=2,則不等式f(x)≥x2+1的解集為[-2,-1]∪[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù),α∈(0,$\frac{π}{2}$)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{4cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),線段AB的中點(diǎn)橫坐標(biāo)為1,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{16}}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知f(x)=|3x-2|,且方程f(x)-a=0恰好有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.觀察等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,…,由以上等式推測(cè)到一個(gè)一般的結(jié)論,對(duì)于n∈N*,13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若三個(gè)實(shí)數(shù)成等比數(shù)列,第一個(gè)數(shù)與第三個(gè)數(shù)的積為4,三個(gè)數(shù)的和為3,求這三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(-x)=f(x),f(x)=f(2-x),當(dāng)x∈[0,1]時(shí),f(x)=x3,則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間[-$\frac{1}{2}$,$\frac{3}{2}$]上的所有零點(diǎn)的和為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案