已知|
a
|=1,
a
b
夾角為
3
,|2
a
+
b
|=
7
,則|
b
|
等于( 。
A、1B、2C、3D、4
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:運用向量的數(shù)量積的定義和性質:向量的平方等于模的平方,解方程即可得到.
解答: 解:由于|
a
|=1,
a
b
夾角為
3
,|2
a
+
b
|=
7
,
則(2
a
+
b
2=7,即4
a
2
+
b
2
+4
a
b
=7,
即有4+
b
2
+4×1×|
b
|×(-
1
2
)=7,
即|
b
|2-2|
b
|-3=0,
解得,|
b
|=3(-1舍去).
故選C.
點評:本題考查平面向量的數(shù)量積的定義和性質,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

證明:平行六面體ABCD-A1B1C1D1中,對角線AC1,A1C,BD1,B1D相交于一點,且互相平分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=xlnx的單調(diào)遞減區(qū)間是( 。
A、(0,e-1
B、(-∞,e-1
C、(e-1,+∞)
D、(e,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下是一組數(shù)據(jù)的莖葉圖.現(xiàn)根據(jù)這個莖葉圖畫頻率分布直方圖,按[110,115),[115,120),…,[140,145)分為7組,則直方圖中第3組小長方形的高為( 。
A、0.2B、0.4
C、0.04D、0.08

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商品的價格前兩年每年遞增20%,后兩年每年遞減20%,最后一年的價格與原來的價格比較,變化情況是( 。
A、不增不減
B、約增1.4%
C、約減9.2%
D、約減7.8%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某船最大限速為a海里/小時.A、B兩地相距500海里,船每小時燃料費與v2成正比(比例系數(shù)為0.6),其余費用為每小時960元.
(1)將全程運輸成本y元表示為v 海里/小時的函數(shù);
(2)為了使y最小,求v的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是 a,b年在某大學自主招生面試環(huán)節(jié)中,七位評委為某考生打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A、83,1.5
B、84,1.5
C、85,1.6
D、86,1.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在面積為S的△ABC的邊上AC任取一點P1,“使P1BC的面積大于
S
3
”的概率等于( 。
A、
1
2
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+1(x≥0),則其反函數(shù)f-1(x)=
 

查看答案和解析>>

同步練習冊答案