A. | $\sqrt{33}$ | B. | $\sqrt{17}$ | C. | $\sqrt{41}$ | D. | $\sqrt{42}$ |
分析 幾何體是四棱錐,且四棱錐的一個側面與底面垂直,結合直觀圖求相關幾何量的數據,可得答案.
解答 解:由三視圖知:幾何體是四棱錐,且四棱錐的一個側面與底面垂直,
底面為邊長為4的正方形如圖:
其中PAD⊥平面ABCD,底面ABCD為正方形,
PE⊥AD,DE=1,AE=3,PE=4,$\sqrt{{4}^{2}+{3}^{2}+{4}^{2}}$
PE⊥底面ABCD,連接CE,BE,
在直角三角形PBE中,
PB=$\sqrt{P{E}^{2}+B{E}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}+{4}^{2}}$=$\sqrt{41}$;
在直角三角形PCE中,
可得PC=$\sqrt{P{E}^{2}+C{E}^{2}}$=$\sqrt{{4}^{2}+{1}^{2}+{4}^{2}}$=$\sqrt{33}$;
又PA=$\sqrt{P{E}^{2}+A{E}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5;
PD=$\sqrt{P{E}^{2}+D{E}^{2}}$=$\sqrt{{4}^{2}+{1}^{2}}$=$\sqrt{17}$.
幾何體最長棱的棱長為$\sqrt{41}$.
故選:C.
點評 本題考查了由三視圖求幾何體的最長棱長問題,根據三視圖判斷幾何體的結構特征是解答本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com