5.在函數(shù)y=lnx的圖象上取點(diǎn)Pn(n,ln n)(n∈N*),記線段PnPn+1的斜率為kn,求證:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

分析 利用兩點(diǎn)的連線的斜率公式得出kn,再利用構(gòu)造輔助函數(shù),利用函數(shù)單調(diào)性求得函數(shù)的最小值,根據(jù)等差數(shù)列前n項(xiàng)和公式,即可證明不等式成立.

解答 解:證明:由題意可知線段PnPn+1的斜率為kn,kn=$\frac{ln(n+1)-lnn}{n+1-n}$=ln(1+$\frac{1}{n}$),
構(gòu)造輔助函數(shù)g(x)=lnx-$\frac{2(x-1)}{x+1}$(x≥1),
f′(x)=$\frac{1}{x}$-$\frac{2(x+1)-2(x+1)}{(x+1)^{2}}$=$\frac{(x-1)^{2}}{x(x+1)^{2}}$≥0,
∴f(x)在(1,+∞)單調(diào)遞增,故f(x)的最小值是f(1)=0,
∴l(xiāng)nx>$\frac{2(x-1)}{x+1}$,
∴l(xiāng)n(1+$\frac{1}{n}$)>$\frac{2(1+\frac{1}{n}-1)}{1+\frac{1}{n}+1}$=$\frac{2}{2n+1}$,
∴$\frac{1}{{k}_{n}}$<$\frac{2n+1}{2}$,
$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{1}{2}$($\frac{(3+2n+1)n}{2}$)=$\frac{n(n+2)}{2}$,
因此:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

點(diǎn)評 本題考查導(dǎo)數(shù)的性質(zhì)的綜合運(yùn)用及運(yùn)用導(dǎo)數(shù)法證明函數(shù)與不等式及等差數(shù)列的綜合問題的處理能力,解題時注意轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,-2),若$\overrightarrow{a}$⊥$\overrightarrow$,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若3+bi與a-i互為共軛復(fù)數(shù),則|a+bi|等于( 。
A.$\sqrt{2}$B.5C.$\sqrt{10}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,平面ABCD⊥平面ABE,四邊形ABCD是邊長為2的正方形,且點(diǎn)B在平面ACE上的射影F恰好落在邊CE上.
(1)求證:AE⊥平面BCE;
(2)當(dāng)二面角B-AC-E的余弦值為$\frac{\sqrt{3}}{3}$時,求∠BAE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長為l,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為(  )
A.lB.2C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A,B是函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$的圖象上任意兩點(diǎn),且$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),點(diǎn)M($\frac{1}{2}$,m).
(I)求m的值;
(II)若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n∈N*,且n≥2,求Sn
(III)已知an=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{{S}_{n},n≥2}\end{array}\right.$,其中n∈N*.Tn為數(shù)列{an}的前項(xiàng)和,若Tn>λ(Sn+1+1)對一切n∈N*都成立,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一錐體的三視圖如圖所示,則該棱錐的最長棱的棱長為( 。
A.$\sqrt{33}$B.$\sqrt{17}$C.$\sqrt{41}$D.$\sqrt{42}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某空間幾何體的三視圖如圖所示,則此幾何體的體積是( 。
A.4B.$\frac{4}{3}$C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.6名同學(xué)坐成一排,要求某3人必須相鄰,一共有多少種坐法?若某2人不能相鄰,一共有多少種不同的站法?

查看答案和解析>>

同步練習(xí)冊答案