已知銳角△ABC中,角A、B、C的對邊長分別為a、b、c,向量
m
=(cosC+sinC,1),
n
=(cosC-sinC,
1
2
),且
m
n

(1)求角C的大;
(2)若邊c=2,求△ABC面積的最大值.
考點:平面向量數(shù)量積的運算,正弦定理
專題:平面向量及應(yīng)用
分析:(1)利用向量垂直,數(shù)量積為0,得到關(guān)于角C的等式解之;
(2)利用正弦定理求出a,b用角表示,結(jié)合三角形的面積公式求最值.
解答: 解:(1)由已知,向量
m
=(cosC+sinC,1),
n
=(cosC-sinC,
1
2
),且
m
n

所以
m
n
=cos2C-sin2C+
1
2
=cos2C+
1
2
=0,所以cos2C=-
1
2
,所以2C=120°,所以C=60°;
(2)由正弦定理得a=
4
3
3
sinA
,b=
4
3
3
sinB

所以S=
1
2
absinC
=
8
3
×
3
2
sinAsinB
=
4
3
3
×
1
2
(cos(A-B)-cos(A+B))
=
2
3
3
(cos(A-B)+
1
2
)
,
所以cos(A-B)=1時,S最大為
3
;
點評:本題考查了正弦定理以及三角形面積公式的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

向量
AB
=(7,-5),將
AB
按向量
a
=(3,6)平移后得向量
A′B′
,則
A′B′
的坐標形式為( 。
A、(10,1)
B、(4,-11)
C、(7,-5)
D、(3,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中AB=1,AD=2,∠DAB=60°,設(shè)
AB
=
a
,
AD
=
b

(1)把
AC
BD
a
,
b
向量來表示;
(2)求
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),設(shè)a=f(-25),b=f(11),c=f(80),則a,b,c的大小關(guān)系是( 。
A、c<b<a
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
的夾角為45°,且|
a
|=1,|2
a
-
b
|=
10
,則|
b
|=(  )
A、
2
B、2
2
C、3
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n(n∈N*)滿足3
C
n-5
n-1
=5
P
2
n-2
,整數(shù)a是413+
C
1
13
412+
C
2
13
411+…+
C
12
13
4
除以6的余數(shù).
(1)求n和a的值;
(2)求(x2+
a
x
)n
二項展開式中二項式系數(shù)最大的項;
(3)利用二項式定理,求函數(shù)F(x)=(x2+
a
x
)5+(
1
x2
+ax)5
在區(qū)間[
1
2
,2]
上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
|cosx|
x
=k在(0,+∞)有且只有兩根,記為α、β(α<β),則βtanβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①“如果x+y=0,則x、y互為相反數(shù)”的逆命題;
②“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈Z)”;
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要條件;
④“如果x2+x-6≥0,則x>2”的否命題,
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,
m
=(sin(x-A),sinA),
n
=(2cosx,1)(x∈R),函數(shù)f(x)=
m
n
在x=
12
處取得最大值.
(1)當x∈(0,
π
2
)時,求函數(shù)f(x)的值域;
(2)若a=7且sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案