已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),設(shè)a=f(-25),b=f(11),c=f(80),則a,b,c的大小關(guān)系是( 。
A、c<b<a
B、b<a<c
C、b<c<a
D、a<c<b
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)滿足f(x-4)=-f(x)可變形為f(x-8)=f(x),得到函數(shù)是以8為周期的周期函數(shù),再由f(x)在區(qū)間[0,2]上是增函數(shù),以及奇函數(shù)的性質(zhì),推出函數(shù)在[-2,2]上的單調(diào)性,即可得到結(jié)論.
解答: 解:∵f(x)滿足f(x-4)=-f(x),
∴f(x-8)=f(x-4-4)=-f(x-4)=f(x),
∴函數(shù)是以8為周期的周期函數(shù),
則f(-25)=f(-1),f(80)=f(0),f(11)=f(3),
又∵f(x)在R上是奇函數(shù),f(0)=0,
得f(80)=f(0)=0,f(-25)=f(-1),
而由f(x-4)=-f(x)
得f(11)=f(3)=-f(3-4)=-f(-1)=f(1),
又∵f(x)在區(qū)間[0,2]上是增函數(shù),f(x)在R上是奇函數(shù)
∴f(x)在區(qū)間[-2,2]上是增函數(shù)
∴f(-1)<f(0)<f(1),
即f(-25)<f(80)<f(11),
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性的綜合運(yùn)用,同時(shí)考查函數(shù)的周期性,解題的關(guān)鍵:把要比較的函數(shù)值轉(zhuǎn)化為單調(diào)區(qū)間上的函數(shù)值進(jìn)行比較.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>1,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于M(
4
,0)對(duì)稱,且在區(qū)間[0,
π
2
]上是單調(diào)函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)y=
-f(x)-
1
2
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜率為1的直線l,過(guò)橢圓
x2
3
+
y2
2
=1的右焦點(diǎn)F2,交橢圓于A,B兩點(diǎn),求弦長(zhǎng)AB和△ABF1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且PB=PD.
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m<
t2+4
3-2t
,t∈[0,1],求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集為R,函數(shù)f(x)=
1-x2
的定義域?yàn)镸,則∁RM為( 。
A、(-∞,-1)
B、[-1,1]
C、(-∞,-1)∪(1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知銳角△ABC中,角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,向量
m
=(cosC+sinC,1),
n
=(cosC-sinC,
1
2
),且
m
n

(1)求角C的大。
(2)若邊c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
sinπx,x∈[0,1]
log2013x,x∈(1,+∞)
,若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=log2(x2-2ax+3)在區(qū)間(-∞,1]內(nèi)單調(diào)遞減,則a的取值范圍是( 。
A、[1,+∞)
B、(1,+∞)
C、[1,2)
D、[1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案