15.函數(shù)y=ax-1+1恒過(guò)定點(diǎn)(  )
A.(2,1)B.(1,2)C.(0,1)D.(-1,1)

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:由x-1=0得x=1,此時(shí)f(1)=a0+1=1+1=2,
即函數(shù)過(guò)定點(diǎn)(1,2),
故選:B.

點(diǎn)評(píng) 本題主要考查指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題,利用指數(shù)冪等于0是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=ax7+bx5+cx3+$\fracbsj5lo4{x}$+6,若f(3)=5,則f(-3)=( 。
A.-5B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2$\sqrt{3}{cos^2}ωx+sin2ωx-\sqrt{3}$(ω>0),相鄰兩對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)y=f(x)的解析式;
(2)把函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,再縱坐標(biāo)不變橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$后得到函數(shù)g(x)的圖象,當(dāng)$x∈[{-\frac{π}{2},\;\;\frac{π}{12}}]$時(shí),求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=$\left\{{\begin{array}{l}{x+1\;,\;\;\;x>0}\\{\;2\;\;\;,\;\;\;\;\;x=0}\\{\;0\;\;\;,\;\;\;\;\;x<0}\end{array}}$,則f{f[f(-1)]}=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若不等式x2-ax-1≥0對(duì)x∈[1,3]恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.a≤0B.a≤$\frac{8}{3}$C.0$≤a≤\frac{8}{3}$D.a$≤0或a≥\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.$cos(-\frac{52π}{3})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.甲盒中有紅、黑、白三種顏色的球各3個(gè),乙盒中有黃、黑、白三種顏色的球各2個(gè)從兩個(gè)盒子中各取1個(gè)球
(1)計(jì)算取出兩個(gè)球都是黑色的概率.
(2)計(jì)算取出兩個(gè)球是不同顏色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,正方體ABCD-A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個(gè)結(jié)論:
①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結(jié)論為③④(注:把你認(rèn)為正確的結(jié)論的序號(hào)都填上).
⑤圖中正方體ABCD-A1B1C1D1的棱所在直線中與直線AB是異面直線的有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給出下列四個(gè)命題:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=logaax(a>0,a≠1)的定義域相同;
(2)函數(shù)y=x3與y=3x的值域相同;
(3)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=logax(a>0,a≠1)互為反函數(shù);
(4)函數(shù)f(x)=$\sqrt{5+4x-{x}^{2}}$的單調(diào)遞增區(qū)間為(-∞,2].
其中正確命題的序號(hào)是(把你認(rèn)為正確的命題序號(hào)都填上)(1)(3).

查看答案和解析>>

同步練習(xí)冊(cè)答案