15.已知數(shù)列{an}是等差數(shù)列,Sn是其前n項(xiàng)和,且S12>0,S13<0,則使an<0成立的最小值n是7.

分析 S12>0,S13<0,可得$\frac{12({a}_{1}+{a}_{12})}{2}$>0,$\frac{13({a}_{1}+{a}_{13})}{2}$<0,因此a6+a7>0,a7<0,即可得出.

解答 解:∵S12>0,S13<0,
∴$\frac{12({a}_{1}+{a}_{12})}{2}$>0,$\frac{13({a}_{1}+{a}_{13})}{2}$<0,
∴a6+a7>0,a7<0,
∴a6>0.
則使an<0成立的最小值n是7.
故答案為:7.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x+1)=x2,則函數(shù)f(x)的解析式為f(x)=(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知圓O:x2+y2=1,點(diǎn)C為直線l:2x+y-2=0上一點(diǎn),若圓O存在一條弦AB垂直平分線段OC,則點(diǎn)C的橫坐標(biāo)的取值范圍是(0,$\frac{8}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.化簡(jiǎn)cos(2π-θ)cos2θ+sinθsin(π+2θ)所得的結(jié)果是(  )
A.cosθB.-cosθC.cos3θD.-cos3θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=lg(3-2x)的定義域?yàn)椋?∞,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足${a_1}=\frac{1}{2}$,且當(dāng)n≥2,且n∈N*時(shí),有$\frac{{{a_{n-1}}}}{a_n}=\frac{{{a_{n-1}}+2}}{{2-{a_n}}}$,
(1)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$為等差數(shù)列;
(2)已知函數(shù)$f(n)={(\frac{9}{10})^n}({n∈{N_+}})$,試問(wèn)數(shù)列$\left\{{\frac{f(n)}{a_n}}\right\}$是否存在最小項(xiàng),如果存在,求出最小項(xiàng);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.不等式$\frac{ax}{x-1}<1$的解集為{x|x<b或x>3},那么a-b的值等于-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)過(guò)點(diǎn)P(0,1)作直線l使它被直線l1:2x+y-8=0和l2:x-3y+10=0截得的線段被點(diǎn)P平分,求直線l的方程.
(2)光線沿直線l1:x-2y+5=0射入,遇直線l:3x-2y+7=0后反射,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.己知兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若對(duì)任意的n∈N*,都有 $\frac{S_n}{T_n}=\frac{2n-2}{4n-3}$,則$\frac{a_4}{{{b_5}+{b_7}}}+\frac{a_8}{{{b_3}+{b_9}}}$的值為$\frac{20}{41}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案