11.設(shè)m、n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;
②若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
③若m∥α,n?α,則m∥n;
④若α⊥β,α∩β=n,m⊥n,則m⊥β
其中正確命題的序號(hào)是①②.

分析 根據(jù)線面平行性質(zhì)定理,結(jié)合線面垂直的定義,可得①是真命題;
根據(jù)如果兩個(gè)平面都垂直于同一個(gè)平面,則這兩個(gè)平面的交線一定垂直于第三個(gè)平面進(jìn)行判斷②是真命題;
③④列舉反例即可.

解答 解:對(duì)于①,因?yàn)閚∥α,所以經(jīng)過(guò)n作平面β,使β∩α=l,可得n∥l,
又因?yàn)閙⊥α,l?α,所以m⊥l,結(jié)合n∥l得m⊥n.由此可得①是真命題;
對(duì)于②,因?yàn)棣,?垂直于同一個(gè)平面γ,故α,β 的交線一定垂直于γ,是真命題;
對(duì)于③,m∥α,n?α,則m∥n或異面,是假命題;
對(duì)于④,若α⊥β,α∩β=n,m⊥n,m?α,則m⊥β,是假命題.
故答案為:①②.

點(diǎn)評(píng) 本題給出關(guān)于空間線面位置關(guān)系的命題,要我們找出其中的真命題,著重考查了線面平行、面面平行的性質(zhì)和線面垂直、面面垂直的判定與性質(zhì)等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.邊界在直線y=0,x=e,y=x及曲線y=$\frac{1}{x}$上的封閉的圖形的面積為( 。
A.$\frac{3}{2}$B.2C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個(gè)內(nèi)角分別為A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.四次多項(xiàng)式f(x)的四個(gè)實(shí)根構(gòu)成公差為2的等差數(shù)列,則f′(x)的所有根中最大根與最小根之差是(  )
A.2B.2$\sqrt{3}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.等差數(shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-13n$,則數(shù)列{|an|}的前10項(xiàng)和等于112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知$\overrightarrow a=(4,2),\overrightarrow b=(1,2)$,求$\overrightarrow a$與$\overrightarrow b$夾角的余弦值,并求$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,如果有性質(zhì)acosA=bcosB,則這個(gè)三角形的形狀是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意實(shí)數(shù)x使得f(a-x)+f(ax2-1)<0成立,則a的取值范圍是(-∞,$\frac{1-\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=ex,g(x)=1nx.
(I)分別求函數(shù)y=f(x)與y=g(x)圖象與坐標(biāo)軸交點(diǎn)處的切線方程;
(Ⅱ)設(shè)h(x)=f(x)-g(x),若函數(shù)h(x)在x=x0處取得極小值,求證:x0∈($\frac{1}{2}$,1),且h(x0)>2.

查看答案和解析>>

同步練習(xí)冊(cè)答案