20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意實(shí)數(shù)x使得f(a-x)+f(ax2-1)<0成立,則a的取值范圍是(-∞,$\frac{1-\sqrt{2}}{2}$).

分析 容易判斷f(x)在R上為增函數(shù),從而根據(jù)條件得出a-x<1-ax2恒成立,整理成ax2-x+a-1<0恒成立,從而得出$\left\{\begin{array}{l}{a<0}\\{△<0}\end{array}\right.$,這樣解出a的范圍即可.

解答 解:f(x)在R上為增函數(shù),且是奇函數(shù);
∴由f(a-x)+f(ax2-1)<0得,f(a-x)<f(1-ax2);
∴a-x<1-ax2對(duì)任意實(shí)數(shù)x都成立;
即ax2-x+a-1<0恒成立;
∴$\left\{\begin{array}{l}{a<0}\\{△=1-4a(a-1)<0}\end{array}\right.$;
解得$a<\frac{1-\sqrt{2}}{2}$;
∴a的取值范圍是(-∞,$\frac{1-\sqrt{2}}{2}$).
故答案為:$(-∞,\frac{1-\sqrt{2}}{2})$.

點(diǎn)評(píng) 考查一次函數(shù)和y=ax3的單調(diào)性,函數(shù)單調(diào)性定義,要熟悉二次函數(shù)的圖象,會(huì)解一元二次不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x3-6bx+2b在(0,1)內(nèi)有極小值,則實(shí)數(shù)b的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)m、n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;
②若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
③若m∥α,n?α,則m∥n;
④若α⊥β,α∩β=n,m⊥n,則m⊥β
其中正確命題的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線的參數(shù)方程:$\left\{\begin{array}{l}x=2+t\\ y=1+\frac{{\sqrt{3}}}{3}t\end{array}\right.$(t為參數(shù)),則它的傾斜角為(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若a,b,c是不全相等的正數(shù),給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b與a<b及a=b中至少有一個(gè)成立;
③a≠c,b≠c,a≠b不能同時(shí)成立.
其中判斷正確的是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=\vec a•\vec b$.其中向量$\vec a=(m,cosx),\vec b=(1+sinx,1),x∈R,且f(\frac{π}{2})=2$.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且${S_n}=\frac{{{a_n}({a_n}+1)}}{2}(n∈{N^*})$,
(Ⅰ)求證數(shù)列{an}是等差數(shù)列;
(Ⅱ)設(shè)${b_n}=\frac{1}{S_n},{T_n}={b_1}+{b_2}+…+{b_n}$,若λ≤Tn對(duì)于任意n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若f(cosx)=cos2x,則f(1)=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三棱錐S-ABC的所有頂點(diǎn)都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,則球Q的體積為( 。
A.$\frac{\sqrt{3}}{2}$πB.$\frac{3}{2}$πC.$\sqrt{3}$πD.12π

查看答案和解析>>

同步練習(xí)冊(cè)答案