分析 (1)分直線斜率存在與否,兩種情況解答;
(2)把直線y=ax+1代入圓C的方程d得到關于x的一元二次方程,利用交點個數(shù)與判別式的關系得到a的范圍,設符合條件的實數(shù)a存在,利用直線垂直的斜率關系得到a值判斷.
解答 解:(1)設直線l的斜率為k(k存在),則方程為y-0=k(x-2),即kx-y-2k=0.
又圓C的圓心為(3,-2),半徑r=3,由$\frac{|3k+2-2k|}{\sqrt{{k}^{2}+1}}$=1,解得k=-$\frac{3}{4}$.
所以直線方程為y=-$\frac{3}{4}$(x-2),即3x+4y-6=0.
當l的斜率不存在時,l的方程為x=2,經(jīng)驗證x=2也滿足條件.
綜上所述,直線l的方程為3x+4y-6=0或x=2;
(2)把直線y=ax+1代入圓C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直線ax-y+1=0交圓C于A,B兩點,
故△=36(a-1)2-36(a2+1)>0,解得a<0.則實數(shù)a的取值范圍是(-∞,0).
設符合條件的實數(shù)a存在.
由于l2垂直平分弦AB,故圓心C(3,-2)必在l2上.所以l2的斜率kPC=-2.
而kAB=a=-$\frac{1}{{k}_{PC}}$,所以a=$\frac{1}{2}$.
由于$\frac{1}{2}$∉(-∞,0),故不存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB.
點評 本題考查了直線方程的求法以及直線與圓的位置關系的判斷;屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,5} | B. | {1,3,4} | C. | {1,2,4,5} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>1 | B. | a>1,且m<0 | C. | 0<a<1,且m>0 | D. | 0<a<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (a,-f(a)) | B. | (a,-f(-a)) | C. | (-a,-f(a)) | D. | (-a,f(a)) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com