【題目】已知函數(shù)f(x)= 若關(guān)于x的方程f(x)=t有三個(gè)不同的解,其中最小的解為a,則 的取值范圍為

【答案】
【解析】解:當(dāng)x<0時(shí),f(x)為增函數(shù),且當(dāng)x→﹣∞時(shí),f(x)→﹣

當(dāng)x>0時(shí),f′(x)=

∴當(dāng)0<x<e時(shí),f′(x)>0,f(x)單調(diào)遞增,

當(dāng)x>e時(shí),f′(x)<0,f(x)單調(diào)遞減,

又當(dāng)x→0時(shí),f(x)→﹣∞,當(dāng)x→+∞時(shí),f(x)→0,

∴當(dāng)x=e時(shí),f(x)取得極大值f(e)=

作出f(x)在定義域的函數(shù)圖象如圖所示:

∵f(x)=t有三解,∴0

令﹣ =t得x=﹣ ,即a=﹣ ,

=﹣

令g(t)=﹣ ,則g(t)在(0, )上單調(diào)遞減,

∴﹣ <g(t)<0.

所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校做了一次關(guān)于“感恩父母”的問卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問卷中抽取60份,則在15~16歲學(xué)生中抽取的問卷份數(shù)為( )
A.60
B.80
C.120
D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程; (Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).

(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若指數(shù)函數(shù)f(x)的圖象過點(diǎn)(﹣2,4),則f(3)=;不等式f(x)+f(﹣x)< 的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角梯形ABCD如圖所示,分別以AB、BC、CD、DA所在直線為軸旋轉(zhuǎn),試說明所得幾何體的大致形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù)且當(dāng) 時(shí)是減函數(shù),若 ,則函數(shù) 的零點(diǎn)共有( )
A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f:A→B是A到B的一個(gè)映射,其中 ,f:(x,y)→(x-y,x+y),求與A中的元素(-1,2)相對應(yīng)的B中的元素和與B中的元素(-1,2)相對應(yīng)的A中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , .

(1)求證: 平面 ;
(2)求 到平面 的距離;
(3)求三棱錐 的體積.

查看答案和解析>>

同步練習(xí)冊答案