17.已知復(fù)數(shù)z滿足z=$\frac{1+2i}{2-i}$,則|z|=1.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),然后代入復(fù)數(shù)模的計(jì)算公式求解.

解答 解:∵z=$\frac{1+2i}{2-i}$=$\frac{(1+2i)(2+i)}{(2-i)(2+i)}=\frac{5i}{5}=i$,
∴|z|=1.
故答案為:1.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$,ω>0,A>0)其部分圖象如圖所示:
(1)求函數(shù)y=f(x)的表達(dá)式.
(2)已知等腰三角形ABC中,角A,B,C的對(duì)邊分別是邊a,b,c,且b=c若g(x)=af(x)+2a+b.當(dāng)x∈[$\frac{π}{2}$,$\frac{4π}{3}$]時(shí),g(x)∈[5,8],求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)y=f(x)在[0,+∞)上的圖象如圖所示,頂點(diǎn)坐標(biāo)為(1,-1).
(1)求f(x)在R上的解析式;
(2)若g(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),g(x)=f(x),畫出g(x)的圖象,并求g(x)的解析式;
(3)由圖象指出g(x)的單調(diào)區(qū)間(不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知{an}是遞增的等差數(shù)列,a3,a5是方程x2-10x+21=0的兩個(gè)根.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn-an}為首項(xiàng)為1,公比為3的等比數(shù)列,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋擲一枚均勻的硬幣4次,則恰有2次正面向上的概率( 。
A.$\frac{1}{2}$B.$\frac{1}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為$\frac{2}{3}$,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=$\frac{1}{12}$,P(X=2)=$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.甲、乙兩支足球隊(duì)比賽,甲獲勝的概率為$\frac{1}{2}$,平局的概率為$\frac{1}{4}$,乙獲勝的概率為$\frac{1}{4}$,下一賽季這兩支球隊(duì)共有5場(chǎng)比賽,在下一賽季中:
(1)甲獲勝3場(chǎng)的概率為$\frac{5}{16}$;
(2)若勝一場(chǎng)積3分,平一場(chǎng)積1分,負(fù)一場(chǎng)積0分,則甲的積分的數(shù)學(xué)期望為$\frac{35}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=-2+i對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(1+ax)+x2-ax(a為常數(shù),a>0).
(1)若x=$\frac{1}{2}$是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)已知函數(shù)g(x)=x2-x+$\frac{7}{4}$-a,當(dāng)a∈(0,1)時(shí).存在x1,x2∈[0,1]使得f(x1)≥g(x2)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案