幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。

(I)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說明理由.

(I)證明如下(Ⅱ)存在

解析試題分析:證明:(1)由已知有,

連結,在正方形中,,,
,
,
為平行四邊行,,
,
解:(2)分別以軸,軸,軸建立空間直角坐標系,
,
,
為平面的一個法向量,
,
,
,
存在此時
考點:直線與平面垂直的判定定理
點評:在立體幾何中,?嫉亩ɡ硎牵褐本與平面垂直的判定定理、直線與平面平行的判定定理。當然,此類題目也經(jīng)常要我們求出幾何體的體積和表面積。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,是邊長為2的正三角形,平面ABC,平面平面ABC,BD=CD,且

(1)若AE=2,求證:AC∥平面BDE;
(2)若二面角A—DE—B為60°.求AE的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在底面是正方形的四棱錐P—ABCD中,PA⊥面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為AC上一點.

(1)求證:BD⊥FG;
(2)確定點G在線段AC上的位置,使FG//平面PBD,并說明理由.
(3)當二面角B—PC—D的大小為時,求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,的直徑AB=4,點C、D為上兩點,且CAB=45°,DAB=60°,F(xiàn)為弧BC的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直,如圖2.
(I)求證:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在點G,使得FG平面ACD?若存在,試指出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在長方體中,,過、、三點的平面截去長方體的一個角后,得到如圖所示的幾何體,且這個幾何體的體積為

(1)求棱的長;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點,CD=BD=2AC=2

(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐P-ABCD的直觀圖(如圖(1))及左視圖(如圖(2)),底面ABCD是邊長為2的正方形,平面PAB⊥平面ABCD,PA=PB。

(1)求證:AD⊥PB;
(2)求異面直線PD與AB所成角的余弦值;
(3)求平面PAB與平面PCD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且

(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,分別為的中點,,且

(1)證明:;
(2)求二面角的余弦值。

查看答案和解析>>

同步練習冊答案