在如圖所示的幾何體中,是邊長為2的正三角形,平面ABC,平面平面ABC,BD=CD,且

(1)若AE=2,求證:AC∥平面BDE;
(2)若二面角A—DE—B為60°.求AE的長。

(1)根據(jù)題意由于可以得到,又平面,平面,從而得到證明。
(2)

解析試題分析:(1)分別取 的中點,連接,則,,且,

因為,,的中點,
所以,
又因為平面⊥平面,
所以平面.     3分
平面,
所以,  5分
所以,且,因此四邊形為平行四邊形,
所以,所以,又平面平面,
所以∥平面. 7分
(或者建立空間直角坐標系,求出平面的法向量,計算即證)

(2)解法一:
垂直的延長線于,連接.
因為,,
所以平面,平面
則有.
所以平面,平面,
所以.
所以為二面角的平面角,
.    10分
中,,則 ,.
中,.
,則,所以,又
中,,即=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知長方體中,底面為正方形,,,點在棱上,且

(Ⅰ)試在棱上確定一點,使得直線平面,并證明;
(Ⅱ)若動點在底面內,且,請說明點的軌跡,并探求長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,邊長為2的正方形中,

(1)點的中點,點的中點,將分別沿折起,使兩點重合于點。求證:
(2)當時,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直角梯形中,,,,為線段的中點,將沿折起,使平面⊥平面,得到幾何體.

(1)若,分別為線段的中點,求證:∥平面;
(2)求證:⊥平面;
(3)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.

(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,

(I)求證
(II)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓錐頂點為.底面圓心為,其母線與底面所成的角為.是底面圓上的兩條平行的弦,軸與平面所成的角為,

(Ⅰ)證明:平面與平面的交線平行于底面;
(Ⅱ)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。

(I)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案