如圖1,的直徑AB=4,點(diǎn)C、D為
上兩點(diǎn),且
CAB=45°,
DAB=60°,F(xiàn)為弧BC的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直,如圖2.
(I)求證:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在點(diǎn)G,使得FG平面ACD?若存在,試指出點(diǎn)G的位置;若不存在,請(qǐng)說明理由.
(1)對(duì)于線面平行的判定關(guān)鍵是證明來得到。
(2)
(3) 在弧上存在點(diǎn)
,使得
//平面
,且點(diǎn)
為弧
的中點(diǎn)
解析試題分析:(方法一):證明:(Ⅰ)如右圖,連接,
,
. …1分 又
為弧
的中點(diǎn),
,
.
平面
,
平面
,
平面
. …4分
解:(Ⅱ)過作
于
,連
.
,平面
⊥平面
.
⊥平面
.又
平面
,
,
平面
,
,則∠
是二面角
的平面角.
,
,
. 由
⊥平面
,
平面
,得
為直角三角形,
,
=
=
. 8分
(Ⅲ)取弧的中點(diǎn)
,連結(jié)
、
,則
…
平面
,
平面
平面
//平面
.
因此,在弧上存在點(diǎn)
,使得
//平面
,且點(diǎn)
為弧
的中點(diǎn).…12分
(方法二):證明:(Ⅰ)如圖,以所在的直線為
軸,以
所在的直線為
軸,以
為原點(diǎn),建立空間直角坐標(biāo)系
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形中,
,
∥
,
,
為線段
的中點(diǎn),將
沿
折起,使平面
⊥平面
,得到幾何體
.
(1)若,
分別為線段
,
的中點(diǎn),求證:
∥平面
;
(2)求證:⊥平面
;
(3)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐頂點(diǎn)為.底面圓心為
,其母線與底面所成的角為
.
和
是底面圓
上的兩條平行的弦,軸
與平面
所成的角為
,
(Ⅰ)證明:平面與平面
的交線平行于底面;
(Ⅱ)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直三棱柱的三視圖如圖所示,
是
的中點(diǎn).
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點(diǎn)
,使
與
成
角?若存在,確定
點(diǎn)位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。
(I)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點(diǎn)M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,四棱錐中,
底面
,面
是直角梯形,
為側(cè)棱
上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:平面
;
(2)線段上是否存在點(diǎn)
,使
與
所成角的余弦值為
?若存在,找到所有符合要求的點(diǎn)
,并求
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點(diǎn).
(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com